分享
分享赚钱 收藏 举报 版权申诉 / 3

类型专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx

  • 上传人:a****
  • 文档编号:828960
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:3
  • 大小:51.71KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习原卷版 专题 05 5.6 奇偶性 题型 归纳 讲义 2022 届高三 数学 一轮 复习 原卷版
    资源描述:

    1、专题四 函数讲义5.6 奇偶性知识梳理.奇偶性1函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)是偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)是奇函数关于原点对称2.判断函数奇偶性的3种常用方法(1)定义法:确定函数的奇偶性时,必须先判定函数定义域是否关于原点对称若对称,再化简解析式后验证f(x)f(x)或其等价形式f(x)f(x)0是否成立(2)图象法:(3)性质法:设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇奇奇,偶偶偶,奇奇偶,偶偶

    2、偶,奇偶奇题型一. 判断奇偶性1已知函数f(x)=2x+12x1,g(x)=2x,则下列结论正确的是()Af(x)g(x)为奇函数Bf(x)g(x)为偶函数Cf(x)+g(x)为奇函数Df(x)+g(x)为非奇非偶函数2下列函数中,在定义域内单调递增且是奇函数的是()Ay=log2(x2+1x)BysinxCy2x2xDy|x1|3设函数f(x)x(ex+ex),则对f(x)的奇偶性和在(0,+)上的单调性判断的结果是()A奇函数,单调递增B偶函数,单调递增C奇函数,单调递减D偶函数,单调递减题型二. 已知奇偶性求参、求值1若函数f(x)=k2x1+k2x(k为常数)在定义域上为奇函数,则k的

    3、值为 2若函数f(x)xln(x+a+x2)为偶函数,则a的值为()A0B1C1D1或13(2019全国2)已知f(x)是奇函数,且当x0时,f(x)eax若f(ln2)8,则a 题型三.两个重要结论1已知函数f(x)=ln(1+x2x)+1,f(a)4,则f(a) 2已知函数f(x)(x22x)sin(x1)+x+1在1,3上的最大值为M,最小值为m,则M+m 题型四. 奇偶性和单调性综合1设函数f(x)ln|2x+1|ln|2x1|,则f(x)()A是偶函数,且在 (12,+)单调递增B是奇函数,且在 (12,12)单调递增C是偶函数,且在(,12)单调递增D是奇函数,且在 (,12)单调

    4、递增2已知函数f(x)是定义在R上的偶函数,且在0,+)上单调递增,则三个数af(log313),bf(2cos25),cf(20.6)的大小关系为()AabcBacbCbacDcab3(2017新课标)函数f(x)在(,+)单调递减,且为奇函数若f(1)1,则满足1f(x2)1的x的取值范围是()A2,2B1,1C0,4D1,34(2020海南)若定义在R的奇函数f(x)在(,0)单调递减,且f(2)0,则满足xf(x1)0的x的取值范围是()A1,13,+)B3,10,1C1,01,+)D1,01,35已知定义域为R的函数f(x)=2x+b2x+1+a是奇函数若对任意的tR,不等式f(t22t)+f(2t2k)0恒成立,则k的取值范围为 6(2007天津)设f(x)是定义在R上的奇函数,且当x0时,f(x)x2,若对任意的xt,t+2,不等式f(x+t)2f(x)恒成立,则实数t的取值范围是()A2,+)B2,+)C(0,2D2,12,37(2017江苏)已知函数f(x)x32x+ex1ex,其中e是自然对数的底数若f(a1)+f(2a2)0则实数a的取值范围是 8(2015新课标)设函数f(x)ln(1+|x|)11+x2,则使得f(x)f(2x1)成立的x的取值范围是()A(,13)(1,+) B(13,1)C(13,13) D(,13)(13,+)

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
    链接地址:https://www.ketangku.com/wenku/file-828960.html
    相关资源 更多
  • 专题07 冠词(原卷版).docx专题07 冠词(原卷版).docx
  • 专题07 写作(原卷版).docx专题07 写作(原卷版).docx
  • 专题07 写作 -2023-2024学年四年级英语上册期中专项复习(人教PEP版).docx专题07 写作 -2023-2024学年四年级英语上册期中专项复习(人教PEP版).docx
  • 专题07 全面依法治国(讲义)(解析版).docx专题07 全面依法治国(讲义)(解析版).docx
  • 专题07 全面依法治国(讲义)(原卷版).docx专题07 全面依法治国(讲义)(原卷版).docx
  • 专题07 全等三角形旋转、一线三等角模型(重点突围)(解析版).docx专题07 全等三角形旋转、一线三等角模型(重点突围)(解析版).docx
  • 专题07 全等三角形旋转、一线三等角模型(重点突围)(原卷版).docx专题07 全等三角形旋转、一线三等角模型(重点突围)(原卷版).docx
  • 专题07 全等三角形中的倍长中线模型(解析版).docx专题07 全等三角形中的倍长中线模型(解析版).docx
  • 专题07 全等三角形中的倍长中线模型(原卷版).docx专题07 全等三角形中的倍长中线模型(原卷版).docx
  • 专题07 倍半角模型(知识精讲)-冲刺2021年中考几何专项复习.docx专题07 倍半角模型(知识精讲)-冲刺2021年中考几何专项复习.docx
  • 专题07 倍半角模型巩固练习(提优)-冲刺2021年中考几何专项复习(解析版).docx专题07 倍半角模型巩固练习(提优)-冲刺2021年中考几何专项复习(解析版).docx
  • 专题07 倍半角模型巩固练习(提优)-冲刺2021年中考几何专项复习(原卷版).docx专题07 倍半角模型巩固练习(提优)-冲刺2021年中考几何专项复习(原卷版).docx
  • 专题07 倍半角模型巩固练习(基础)-冲刺2021年中考几何专项复习(解析版).docx专题07 倍半角模型巩固练习(基础)-冲刺2021年中考几何专项复习(解析版).docx
  • 专题07 伴性遗传与人类遗传病(解析版).docx专题07 伴性遗传与人类遗传病(解析版).docx
  • 专题07 伴性遗传与人类遗传病(原卷版).docx专题07 伴性遗传与人类遗传病(原卷版).docx
  • 专题07 传送带模型-2022-2023学年高中物理同步练习分类专题教案(人教版2019必修第一册).docx专题07 传送带模型-2022-2023学年高中物理同步练习分类专题教案(人教版2019必修第一册).docx
  • 专题07 仿用、变化句式(导学案)-2023年新高考一轮复习讲堂之语言文字运用.docx专题07 仿用、变化句式(导学案)-2023年新高考一轮复习讲堂之语言文字运用.docx
  • 专题07 任务型阅读(回答问题)12篇(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(重庆专用).docx专题07 任务型阅读(回答问题)12篇(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(重庆专用).docx
  • 专题07 代词和限定词【知识梳理】-【口袋书】2024年中考英语一轮复习知识清单(全国通用)(解析版).docx专题07 代词和限定词【知识梳理】-【口袋书】2024年中考英语一轮复习知识清单(全国通用)(解析版).docx
  • 专题07 代词和限定词【知识梳理】-【口袋书】2024年中考英语一轮复习知识清单(全国通用)(原卷版).docx专题07 代词和限定词【知识梳理】-【口袋书】2024年中考英语一轮复习知识清单(全国通用)(原卷版).docx
  • 专题07 介词-2023年高考英语冲刺复习考点通关大全.docx专题07 介词-2023年高考英语冲刺复习考点通关大全.docx
  • 专题07 人口专题(讲义)-【高频考点解密】2023年高考地理二轮专题复习课件 讲义 分层训练(浙江专用)(原卷版).docx专题07 人口专题(讲义)-【高频考点解密】2023年高考地理二轮专题复习课件 讲义 分层训练(浙江专用)(原卷版).docx
  • 专题07 人口专题(分层训练)-【高频考点解密】2023年高考地理二轮复习课件 讲义 分层训练(浙江专用)(解析版).docx专题07 人口专题(分层训练)-【高频考点解密】2023年高考地理二轮复习课件 讲义 分层训练(浙江专用)(解析版).docx
  • 专题07 二项式定理【艺体生专供选择填空抢分专题】备战2024年高考高频考点题型精讲 精练(新高考通用)-解析版.docx专题07 二项式定理【艺体生专供选择填空抢分专题】备战2024年高考高频考点题型精讲 精练(新高考通用)-解析版.docx
  • 专题07 二次方程(解析版).docx专题07 二次方程(解析版).docx
  • 专题07 二次方程(原卷版).docx专题07 二次方程(原卷版).docx
  • 专题07 二次函数的综合(中考数学特色专题训练卷)(解析版).docx专题07 二次函数的综合(中考数学特色专题训练卷)(解析版).docx
  • 专题07 二次函数的综合(中考数学特色专题训练卷)(原卷版).docx专题07 二次函数的综合(中考数学特色专题训练卷)(原卷版).docx
  • 专题07 二次函数与直角三角形有关问题(专项训练)(解析版).docx专题07 二次函数与直角三角形有关问题(专项训练)(解析版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1