分享
分享赚钱 收藏 举报 版权申诉 / 12

类型专题18 最值问题中的胡不归模型(原卷版).docx

  • 上传人:a****
  • 文档编号:832900
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:12
  • 大小:849.25KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题18 最值问题中的胡不归模型原卷版 专题 18 问题 中的 胡不归 模型 原卷版
    资源描述:

    1、专题18 最值问题中的胡不归模型 【模型展示】特点从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?”(“胡”同“何”)如图,一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V1V2,A、B为定点,点C在直线MN上,确定点C的位置使的值最小,记,结论BC+kAC的最小值【模型证明】解决方案构造射线AD使得sinDAN=k,CH/AC=k,CH=kAC将问题转化为求

    2、BC+CH最小值,过B点作BHAD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型【题型演练】一、单选题1如图,在平面直角坐标系中,二次函数的图像与x轴交于A、C两点,与x轴交于点,若P是x轴上一动点,点D的坐标为,连接PD,则的最小值是()A4BCD2如图,在平面直角坐标系中,二次函数yx22xc的图象与x轴交于A、C两点,与y轴交于点B(0,3),若P是x轴上一动点,点D(0,1)在y轴上,连接PD,则PDPC的最小值是()A4B22C2D二、填空

    3、题3如图,矩形ABCD中AB3,BC,E为线段AB上一动点,连接CE,则AECE的最小值为_4如图,在中,半径为的经过点,是圆的切线,且圆的直径在线段上,设点是线段上任意一点不含端点,则的最小值为_5如图,ABC中,BAC75,ACB60,AC4,则ABC的面积为_;点D,点E,点F分别为BC,AB,AC上的动点,连接DE,EF,FD,则DEF的周长最小值为_6如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在边CD上,且线段EF4,点G为线段EF的中点,连接BG、CG,则BG+CG的最小值为 _7如图,中,为边上一点,则的最小值为_8如图,在平面直角坐标系中,一次函数分别交x轴、

    4、y轴于A、B两点,若C为x轴上的一动点,则2BC+AC的最小值为_9如图,在ABC中,ABAC4,CAB30,ADBC,垂足为D,P为线段AD上的一动点,连接PB、PC则PA+2PB的最小值为 _10如图,在边长为4的正方形ABCD内有一动点P,且BP连接CP,将线段PC绕点P逆时针旋转90得到线段PQ连接CQ、DQ,则DQ+CQ的最小值为 _三、解答题11AOB30,OM2,D为OB上动点,求MDOD的最小值12已知,在正方形ABCD中,点E,F分别为AD上的两点,连接BE、CF,并延长交于点G,连接DG,H为CF上一点,连接BH、DH,(1)如图1,若H为CF的中点,且,求线段AB的长;(

    5、2)如图2,若,过点B作于点I,求证:;(3)如图2,在(1)的条件下,P为线段AD(包含端点A、D)上一动点,连接CP,过点B作于点Q,将沿BC翻折得,N为直线AB上一动点,连接MN,当面积最大时,直接写出的最小值13如图,在平面直角坐标系中,直线分别与x,y轴交于点A,B,抛物线恰好经过这两点(1)求此抛物线的解析式;(2)若点C的坐标是,将绕着点C逆时针旋转90得到,点A的对应点是点E写出点E的坐标,并判断点E是否在此抛物线上;若点P是y轴上的任一点,求取最小值时,点P的坐标14如图1,抛物线与x轴交于点,与y轴交于点B,在x轴上有一动点(),过点E作x轴的垂线交直线AB于点N,交抛物线

    6、于点P,过点P作PMAB于点M(1)求a的值和直线AB的函数表达式:(2)设PMN的周长为,AEN的周长为,若求m的值(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转得到,旋转角为(),连接、,求的最小值15如图1,已知正方形ABCD,AB4,以顶点B为直角顶点的等腰RtBEF绕点B旋转,BEBF,连接AE,CF(1)求证:ABECBF(2)如图2,连接DE,当DEBE时,求SBCF的值(SBCF表示BCF的面积)(3)如图3,当RtBEF旋转到正方形ABCD外部,且线段AE与线段CF存在交点G时,若M是CD的中点,P是线段DG上的一个动点,当满足MP+PG的值最小时,求MP的值16

    7、如图,矩形的顶点、分别在、轴的正半轴上,点的坐标为,一次函数的图象与边、轴分别交于点、,并且满足,点是线段上的一个动点(1)求的值;(2)连接,若的面积与四边形的面积之比为,求点的坐标;(3)求的最小值17如图,在平面直角坐标系中,二次函数yax2bxc的图象经过点A(1,0),B(0,),C(2,0),其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)点M为抛物线的对称轴上的一个动点,若平面内存在点N,使得以A,B,M,N为顶点的四边形为菱形,求点M的坐标;(3)若P为y轴上的一个动点,连接PD,求PBPD的最小值18已知抛物线yax2bxc与x轴交于A(1,0),B(5,0

    8、)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连接BC,且tanCBD,如图所示(1)求抛物线的解析式;(2)设P是抛物线的对称轴上的一个动点过点P作x轴的平行线交线段BC于点E,过点E作EFPE交抛物线于点F,连接FB、FC,求BCF的面积的最大值;连接PB,求PCPB的最小值19在平面直角坐标系中,将二次函数的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与轴交于点、(点在点的左侧),经过点的一次函数的图象与轴正半轴交于点,且与抛物线的另一个交点为,的面积为5(1)求抛物线和一次函数的解析式;(2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出

    9、此时点E的坐标;(3)若点为轴上任意一点,在(2)的结论下,求的最小值20已知抛物线过点,两点,与y轴交于点C,(1)求抛物线的解析式及顶点D的坐标;(2)过点A作,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由21如图1,在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(1)求A、C两点的坐标;(2)连接AC,点P为直线AC上方抛物线上(不与A、C重合)的一动点,过点P作PDAC交AC于点D,

    10、PEx轴交AC于点E,求PD+DE的最大值及此时点P的坐标;(3)如图2,将原抛物线沿射线CB方向平移3个单位得到新抛物线y,点M为新抛物线y对称轴上一点,在新抛物线y上是否存在一点N,使以点C、A、M、N为顶点的四边形为平行四边形,若存在,请直接写出点M的坐标,并选择一个你喜欢的点写出求解过程;若不存在,请说明理由22如图,已知抛物线(为常数,且)与轴从左至右依次交于A,B两点,与轴交于点C,经过点B的直线与抛物线的另一交点为D(1)若点D的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限的抛物线上有点P,使得以A,B,P为顶点的三角形与ABC相似,求的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止当点F的坐标是多少时,点M在整个运动过程中用时最少

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题18 最值问题中的胡不归模型(原卷版).docx
    链接地址:https://www.ketangku.com/wenku/file-832900.html
    相关资源 更多
  • 六年级(上册)道德与法治期末卷参考答案.docx六年级(上册)道德与法治期末卷参考答案.docx
  • 六年级(上册)道德与法治期末卷加答案下载.docx六年级(上册)道德与法治期末卷加答案下载.docx
  • 六年级(上册)道德与法治期末卷【黄金题型】.docx六年级(上册)道德与法治期末卷【黄金题型】.docx
  • 六年级(上册)道德与法治期末卷【能力提升】.docx六年级(上册)道德与法治期末卷【能力提升】.docx
  • 六年级(上册)道德与法治期末卷【考试直接用】.docx六年级(上册)道德与法治期末卷【考试直接用】.docx
  • 六年级(上册)道德与法治期末卷【考点梳理】.docx六年级(上册)道德与法治期末卷【考点梳理】.docx
  • 六年级(上册)道德与法治期末卷【考点提分】.docx六年级(上册)道德与法治期末卷【考点提分】.docx
  • 六年级(上册)道德与法治期末卷【综合卷】.docx六年级(上册)道德与法治期末卷【综合卷】.docx
  • 六年级(上册)道德与法治期末卷【精选题】.docx六年级(上册)道德与法治期末卷【精选题】.docx
  • 六年级(上册)道德与法治期末卷【巩固】.docx六年级(上册)道德与法治期末卷【巩固】.docx
  • 六年级(上册)道德与法治期末卷【完整版】.docx六年级(上册)道德与法治期末卷【完整版】.docx
  • 六年级(上册)道德与法治期末卷【夺分金卷】.docx六年级(上册)道德与法治期末卷【夺分金卷】.docx
  • 六年级(上册)道德与法治期末卷【夺冠系列】.docx六年级(上册)道德与法治期末卷【夺冠系列】.docx
  • 六年级(上册)道德与法治期末卷【含答案】.docx六年级(上册)道德与法治期末卷【含答案】.docx
  • 六年级(上册)道德与法治期末卷【名校卷】.docx六年级(上册)道德与法治期末卷【名校卷】.docx
  • 六年级(上册)道德与法治期末卷【典优】.docx六年级(上册)道德与法治期末卷【典优】.docx
  • 六年级(上册)道德与法治期末卷a4版打印.docx六年级(上册)道德与法治期末卷a4版打印.docx
  • 六年级音乐教学打算.docx六年级音乐教学打算.docx
  • 六年级道德与法治下册教案——1.3 学会反思 优质课教案.docx六年级道德与法治下册教案——1.3 学会反思 优质课教案.docx
  • 六年级道德与法治下册教案-第8课:科技发展 造福人类第2课时 优质课教学设计.docx六年级道德与法治下册教案-第8课:科技发展 造福人类第2课时 优质课教学设计.docx
  • 六年级计算题混合运算9(1页 12题).docx六年级计算题混合运算9(1页 12题).docx
  • 六年级计算题混合运算7(1页 18题).docx六年级计算题混合运算7(1页 18题).docx
  • 六年级计算题混合运算6(1页 18题).docx六年级计算题混合运算6(1页 18题).docx
  • 六年级计算题混合运算5(1页 18题).docx六年级计算题混合运算5(1页 18题).docx
  • 六年级计算题混合运算4(1页 15题).docx六年级计算题混合运算4(1页 15题).docx
  • 六年级计算题混合运算2(1页 15题).docx六年级计算题混合运算2(1页 15题).docx
  • 六年级计算题 混合运算1(1页 18题).docx六年级计算题 混合运算1(1页 18题).docx
  • 六年级计算题 混合运算16(1页 15题).docx六年级计算题 混合运算16(1页 15题).docx
  • 六年级计算题 混合运算15(1页 15题).docx六年级计算题 混合运算15(1页 15题).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1