全国通用2022版高考数学考前三个月复习冲刺专题9第41练几何证明选讲理.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 通用 2022 高考 数学 考前 三个月 复习 冲刺 专题 41 几何 证明 讲理
- 资源描述:
-
1、第41练几何证明选讲题型分析高考展望本讲主要考查相似三角形与射影定理,圆的切线及圆内接四边形的性质与判定定理,圆周角定理及弦切角定理,相交弦、切割线、割线定理等,本部分内容多数涉及圆,并且多是以圆为背景设计的综合性考题,考查逻辑推理能力试题主要以解答题形式出现,难易程度均为中低档题常考题型精析题型一相似三角形及射影定理例1如图所示,CD垂直平分AB,点E在CD上,DFAC,DGBE,F、G分别为垂足求证:AFACBGBE.点评(1)在使用直角三角形射影定理时,要学会将“乘积式”转化为相似三角形中的“比例式”(2)证题时,作垂线构造直角三角形是解该类问题的常用方法变式训练1如图,RtABC中,B
2、AC90,ADBC于D,BE平分ABC交AC于E,EFBC于F.求证:EFDFBCAC.题型二相交弦定理、割线定理、切割线定理、切线长定理的应用例2(2022重庆改编)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B,C.若PA6,AC8,BC9,求AB的值点评(1)圆中线段长度成比例的问题,要结合切割线定理、相交弦定理,构造比例关系(2)利用相似关系求解线段长度要灵活地在三角形中对条件进行转化或等比替换变式训练2(2022天津改编)如图,在圆O中,M,N是弦AB的三等分点,弦CD,CE分别经过点M,N.若CM2,MD4,CN3,求线段NE的长题型三四点共圆的判定例3如图,已
3、知ABC的两条角平分线AD和CE相交于H,B60,F在AC上,且AEAF.证明:(1)B、D、H、E四点共圆;(2)CE平分DEF.点评(1)如果四点与一定点距离相等,那么这四点共圆;(2)如果四边表的一组对角互补,那么这个四边形的四个顶点共圆;(3)如果四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆变式训练3(2022湖南)如图,在O中,相交于点E的两弦AB,CD的中点分别是M,N,直线MO与直线CD相交于点F,证明:(1)MENNOM180;(2) FEFNFMFO.高考题型精练1(2022重庆改编)如图,圆O的弦AB,CD相交于点E,过点A作圆O的切线与DC的延长线交于点P
4、,若PA6,AE9,PC3,CEED21,求BE的长2(2022陕西)如图,AB切O于点B,直线AO 交O于D,E两点,BCDE,垂足为C.(1)证明:CBDDBA;(2)若AD3DC,BC,求O的直径3.如图,O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交O于N,过N点的切线交CA的延长线于P.(1)求证:PM2PAPC;(2)若O的半径为2,OAOM,求MN的长4(2022课标全国)如图,O为等腰三角形ABC内一点,O与ABC的底边BC交于M、N两点,与底边上的高AD交于点G,且与AB、AC分别相切于E、F两点(1)证明:EFBC;(2)若AG等于O的半径,且AEMN2,求四边
5、形EBCF的面积5(2022课标全国)如图,四边形ABCD是O的内接四边形,AB的延长线与DC的延长线交于点E,且CBCE.(1)证明:DE;(2)设AD不是O的直径,AD的中点为M,且MBMC,证明:ADE为等边三角形6.如图所示,已知AP是O的切线,P为切点,AC是O的割线,与O交于B、C两点,圆心O在PAC的内部,点M是BC的中点(1)证明:A,P,O,M四点共圆;(2)求OAMAPM的大小7(2022辽宁)如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PGPD,连结DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(1)求证:AB为圆的直径;(2)若ACBD,求证:ABED
6、.8.如图所示,过圆O外一点M作它的一条切线,切点为A,过A点作直线AP垂直于直线OM,垂足为P.(1)证明:OMOPOA2;(2)N为线段AP上一点,直线NB垂直于直线ON,且交圆O于B点过B点的切线交直线ON于K.证明:OKM90.答案精析专题9系列4选讲第41练几何证明选讲常考题型精析例1证明因为CD垂直平分AB,所以ACD和BDE均为直角三角形,并且ADBD.又因为DFAC,DGBE,所以AFACAD2,BGBEDB2,因为AD2DB2,所以AFACBGBE.变式训练1证明BAC90,且ADBC,由射影定理得AC2CDBC,.EFBC,ADBC,EFAD,.又BE平分ABC,且EAAB
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
