分享
分享赚钱 收藏 举报 版权申诉 / 31

类型基础强化人教版九年级数学上册第二十二章二次函数达标测试练习题(解析版).docx

  • 上传人:a****
  • 文档编号:958351
  • 上传时间:2025-12-19
  • 格式:DOCX
  • 页数:31
  • 大小:751.55KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    基础 强化 人教版 九年级 数学 上册 第二十二 二次 函数 达标 测试 练习题 解析
    资源描述:

    1、人教版九年级数学上册第二十二章二次函数达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在同一平面直角坐标系内,二次函数与一次函数的图象可能是()ABCD2、将抛物线C1:y(x3)22向左平移3个

    2、单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()Ayx22Byx22Cyx22Dyx223、如图,已知点M为二次函数图象的顶点,直线分别交x轴,y轴于点A,B点M在内,若点,都在二次函数图象上,则,的大小关系是()ABCD4、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是()ABCD5、二次函数的图象如下左图,则一次函数与反比例函数在同一坐标系内的图象大致为()ABCD6、如图,在平面直角坐标系中,抛物线yax2+bx+c(a0)与x轴交于点A(1,0),顶点坐标为(1,m),与y轴的交点在(0,4),(0,3)之间(包含端

    3、点),下列结论:abc0;4ac-b20;ac0;1a;关于x的方程ax2+bx+c+2m0没有实数根其中正确的结论有()A1个B2个C3个D4个7、二次函数的图象如图所示,对称轴是直线下列结论:;(为实数)其中结论正确的个数为()A1个B2个C3个D4个8、关于二次函数,下列说法正确的是()A图象的对称轴在轴的右侧B图象与轴的交点坐标为C图象与轴的交点坐标为和D的最小值为99、在同一坐标系中,二次函数与一次函数的图像可能是()ABCD10、如图,抛物线交轴于点,交轴于点若点坐标为,对称轴为直线,则下列结论错误的是()A二次函数的最大值为BCD第卷(非选择题 70分)二、填空题(5小题,每小题

    4、4分,共计20分)1、若正方体的棱长为,表面积为,则与的关系式为_2、如图是二次函数 和一次函数y2kx+t的图象,当y1y2时,x的取值范围是_3、如果抛物线y(m1)x2有最低点,那么m的取值范围为_4、二次函数的图象开口向下,则m_5、如图,二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),与y轴交于点C下列结论:abc0;3ac0;当x0时,y随x的增大而增大;对于任意实数m,总有abam2bm其中正确的是 _(填写序号)三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接(1)求抛物线的解析式;(2)点

    5、在抛物线的对称轴上,当的周长最小时,点的坐标为_;(3)点是第四象限内抛物线上的动点,连接和求面积的最大值及此时点的坐标;(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由2、某品牌汽车销售店销售某种品牌的汽车,每辆汽车的进价16(万元)当每辆售价为22(万元)时,每月可销售4辆汽车根据市场行情,现在决定进行降价销售通过市场调查得到了每辆降价的费用(万元)与月销售量(辆)()满足某种函数关系的五组对应数据如下表:4567800.511.52(1)请你根据所给材料和初中所学的函数知识写出与的关系式_;(2)每辆原

    6、售价为22万元,不考虑其它成本,降价后每月销售利润y=(每辆原售价-进价)x,请你根据上述条件,求出月销售量为多少时,销售利润最大?最大利润是多少?3、某企业接到生产一批设备的订单,要求不超过12天完成这种设备的出厂价为1200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台若干天后,每台设备的生产成本将会增加,设第x天(x为整数)的生产成本为m(元台),m与x的关系如图所示(1)若第x天可以生产这种设备y台,则y与x的函数关系式为_,x的取值范围为_;(2)第几天时,该企业当天的销售利润最大?最大利润为多少?(3)求当天销售利润低于10800元的天数4、在平面直角坐标系

    7、中,抛物线交x轴于点,过点B的直线交抛物线于点C(1)求该抛物线的函数表达式;(2) 若点P是直线BC下方抛物线上的一个动点(P不与点B,C重合),求面积的最大值;(3)若点M在抛物线上,将线段OM绕点O旋转90,得到线段ON,是否存在点M,使点N恰好落在直线BC上?若存在,请直接写出点M的坐标;若不存在,请说明理由5、 “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(

    8、3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.-参考答案-一、单选题1、C【解析】【分析】根据一次函数和二次函数的图象和性质,分别判断a,b的符号,利用排除法即可解答【详解】解:A、由一次函数图象可知,a0,b0,由二次函数图象可知,a0,b0,不符合题意;B、由一次函数图象可知,a0,b0,由二次函数图象可知,a0,b0,不符合题意;C、由一次函数图象可知,a0,b0,由二次函数图象可知,a0,b0,符合题意;D、由一次函数图象可知,a0,b=0,由二次函数图象可知,a0,b0,不符合题意

    9、;故选:C【考点】本题考查二次函数的图象和一次函数的图象,解题的关键是明确一次函数和二次函数的性质2、D【解析】【分析】根据抛物线C1的解析式得到顶点坐标,利用二次函数平移的规律:左加右减,上加下减,并根据平移前后二次项的系数不变可得抛物线C2的顶点坐标,再根据关于x轴对称的两条抛物线的顶点横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C3所对应的解析式【详解】解:抛物线 C 1:y(x3)22,其顶点坐标为(3,2)向左平移3个单位长度,得到抛物线C2抛物线C2的顶点坐标为(0,2)抛物线C2与抛物线C3关于 x轴对称抛物线C3的横坐标不变,纵坐标互为相反数,二次项系数互为相

    10、反数抛物线C3的顶点坐标为(0,2),二次项系数为1抛物线C3的解析式为yx22故选:D【考点】本题主要考查了二次函数图象的平移、对称问题,熟练掌握平移的规律以及关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数是解题的关键3、A【解析】【分析】根据题意确定出的取值范围,然后根据二次函数的性质即可得出,的大小关系【详解】解:点M为二次函数图象的顶点,点,直线分别交x轴,y轴于点A,B,令,解得:,令,解得:,点M在内,解得:,抛物线开口向下,与对称轴距离越近,其值越大;与对称轴距离越远,其值越小;对称轴在之间,比距离对称轴更近,故选:A【考点】本题考查了二次函数

    11、的性质,一次函数的图像与坐标轴的交点问题,熟知一次函数的与二次函数的性质是解本题的关键4、D【解析】【分析】直接根据“左加右减,上加下减”的原则进行解答即可【详解】由“左加右减”的原则可知,抛物线y=2x2向右平移2个单位所得抛物线是y=2(x2)2;由“上加下减”的原则可知,抛物线y=2(x2)2向下平移1个单位所得抛物线是y=2(x2)21.故选D.【考点】本题考查了二次函数图象与几何变换,解题的关键是掌握二次函数图象与几何变换.5、C【解析】【分析】根据二次函数图像,确定二次函数系数的符号,再确定一次函数与反比例函数的系数,即可求得【详解】解:二次函数图像开口向上,得到二次函数图像与轴有

    12、两个交点,得到二次函数的与轴交点在轴的下方,得到二次函数的对称轴,得到一次函数图像经过一、二、三象限反比例函数的图像经过二、四象限故选:C【考点】此题主要考查了一次函数、反比例函数与二次函数图像与系数的关系,熟练掌握相关知识是解题的关键6、C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线yax2+bx+c(a0)的图象开口向上,a0抛物线yax2+bx+c(a0)的对称轴在y轴的右侧, 又抛物线yax2+bx+c(a0)的图象交y轴的负半轴, ,故正确,符合题意;抛

    13、物线yax2+bx+c(a0)的图象与x轴有两个交点,即,故错误,不符合题意;抛物线的顶点坐标为(1,m),与x轴的一个交点为A(-1,0)对称轴为x=1抛物线与x轴的另一个交点为(3,0)当x=3时,y=,ac =0,故错误,不符合题意;当x=-1时,y=a-b+c=0,则c=-a+b, 由-4c-3,得-4-a+b-3,图象的对称轴为x=1,故b=-2a,得-4-3a-3,故1a正确,符合题意;y=ax2+bx+c的顶点为(1,m),即当x=1时y有最小值m而y=m-2和y=ax2+bx+c无交点,即方程ax2+bx+c=m-2无解,关于x的方程ax2+bx+c+2-m=0没有实数根,故正

    14、确,符合题意故选:C【考点】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征7、C【解析】【分析】由抛物线开口方向得到,对称轴在轴右侧,得到与异号,又抛物线与轴正半轴相交,得到,可得出,选项错误;把代入中得,所以正确;由时对应的函数值,可得出,得到,由,得到,选项正确;由对称轴为直线,即时,有最小值,可得结论,即可得到正确【详解】解:抛物线开口向上,抛物线的对称轴在轴右侧,抛物线与轴交于负半轴,错误;当时,把代入中得,所以正确;当时,即,所以正确;抛物线的对称轴为直线,时,函数的最小值为,即,所

    15、以正确故选C【考点】本题考查了二次函数图象与系数的关系:二次项系数决定抛物线的开口方向和大小当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时,对称轴在轴左;当与异号时,对称轴在轴右常数项决定抛物线与轴交点:抛物线与轴交于抛物线与轴交点个数由判别式确定:时,抛物线与轴有2个交点;时,抛物线与轴有1个交点;时,抛物线与轴没有交点8、D【解析】【分析】先把抛物线的解析式化成顶点式,再根据二次函数的性质逐个判断即可【详解】抛物线的对称轴为直线:x=-1,在y轴的左侧,故选项A错误;令x=0,则y=-8,所以图象与轴的交点坐标为,故选项B错误;令y=0,

    16、则,解得x1=2,x2=-4,图象与轴的交点坐标为和,故选项C错误;,a=10,所以函数有最小值-9,故选项D正确故选:D【考点】本题考查了二次函数的图象、二次函数的性质和二次函数的最值,能熟记二次函数的性质是解此题的关键9、C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y

    17、轴于正半轴,常数项为负,交y轴于负半轴如此分析下来,二次函数与一次函数无矛盾者为正确答案【详解】解:由方程组得ax2a,a0x21,该方程无实数根,故二次函数与一次函数图象无交点,排除BA:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;但是一次函数b为一次项系数,图象显示从左向右上升,b0,两者矛盾,故A错;C:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;b为一次函数的一次项系数,图象显示从左向右下降,b0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错故选C【考点】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负

    18、的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上10、D【解析】【分析】根据抛物线的开口方向、对称轴、顶点坐标、与x轴、y轴的交点以及过特殊点时相应的系数a、b、c满足的关系进行综合判断即可【详解】解:抛物线yax2bxc过点A(4,0),对称轴为直线x1,因此有:x1,即2ab0,因此选项D符合题意;当x1时,yabc的值最大,选项A不符合题意;由抛物线的对称性可知,抛物线与x轴的另一个交点为(2,0),当x1时,yabc0,因此选项B不符合题意;抛物线与x轴有两个不同交点,因此b24ac0,故选项C不符合题意;故选:D【考点】本题考查二次函数的图象

    19、和性质,掌握抛物线的位置与系数a、b、c的关系是正确判断的前提二、填空题1、【解析】【分析】正方体有6个面,每一个面都是边长为x的正方形,这6个正方形的面积和就是该正方体的表面积【详解】解:正方体有6个面,每一个面都是边长为x的正方形,表面积故答案为:【考点】本题考查了列二次函数关系式,理解两个变量之间的关系是得出关系式的关键2、1x2【解析】【分析】根据图象可以直接回答,使得y1y2的自变量x的取值范围就是直线y1=kx+m落在二次函数y2=ax2+bx+c的图象上方的部分对应的自变量x的取值范围【详解】根据图象可得出:当y1y2时,x的取值范围是:1x2故答案为:1x2【考点】本题考查了二

    20、次函数的性质本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题的难度3、m1【解析】【分析】直接利用二次函数的性质得出m1的取值范围进而得出答案【详解】解:抛物线y=(m1)x2有最低点,m10,解得:m1故答案为m1【考点】本题考查了二次函数的性质,正确掌握二次函数的性质是解题的关键4、【解析】【分析】根据二次函数的图象开口向下可得,求解即可【详解】解:二次函数的图象开口向下,解得:,故答案为:【考点】本题考查了二次函数图像与系数的关系,熟知一元二次方程,开口向上;,开口向下是解本题的关键5、#【解析】【分析】根据抛物线的对称轴,开口方向,与轴的交点位置,即可判断,根据二次函

    21、数yax2+bx+c的图象经过点A(3,0),B(1,0),即可求得对称轴,以及当时,进而可以判断,根据顶点求得函数的最大值,即可判断【详解】解:抛物线开口向下,对称轴,抛物线与轴交于正半轴,故正确,二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),对称轴为,则,当,故不正确,由函数图象以及对称轴为,可知,当时,随的增大而增大,故不正确,对称轴为,则当时,取得最大值,对于任意实数m,总有,即,故正确故答案为:【考点】本题考查了二次函数图象的性质,数形结合是解题的关键三、解答题1、(1);(2);(3)面积最大为,点坐标为;(4)存在点,使以点、为顶点的四边形是平行四边形,,点坐

    22、标为,【解析】【分析】(1)将点,代入即可求解;(2)BC与对称轴的交点即为符合条件的点,据此可解;(3)过点作轴于点,交直线与点,当EF最大时面积的取得最大值,据此可解;(4)根据平行四边形对边平行且相等的性质可以得到存在点N使得以B,C,M,N为顶点的四边形是平行四边形.分三种情况讨论.【详解】解:(1) 抛物线过点,解得:抛物线解析式为(2) 点,抛物线对称轴为直线点在直线上,点,关于直线对称,当点、在同一直线上时,最小抛物线解析式为,C(0,-6),设直线解析式为,解得:直线:,故答案为:(3)过点作轴于点,交直线与点,设,则,当时,面积最大为,此时点坐标为(4)存在点,使以点、为顶点

    23、的四边形是平行四边形设N(x,y),M(,m),四边形CMNB是平行四边形时,CMNB,CBMN,x= ,y= = ,N(,);四边形CNBM是平行四边形时,CNBM,CMBN,x=,y=N(,);四边形CNMB是平行四边形时,CBMN,NCBM,x=,y=N(,);点坐标为(,),(,),(,)【考点】本题考查二次函数与几何图形的综合题,熟练掌握二次函数的性质,灵活运用数形结合思想得到坐标之间的关系是解题的关键2、 (1);(2)月销售量为8辆时,销售利润最大,最大利润是32万元【解析】【分析】(1)观察表格中数据可知,与的关系式为一次函数的关系,设解析式为,再代入数据求解即可;(2)根据已

    24、知条件“每月销售利润y=(每辆原售价-进价)x”,求出y的表达式,然后再借助二次函数求出其最大利润即可【详解】解:(1)由表中数据可知,与的关系式为一次函数的关系,设解析式为,代入点(4,0)和点(5,0.5),得到,解得,故与的关系式为;(2)由题意可知:降价后每月销售利润y=(每辆原售价-进价)x,即:,其中,是的二次函数,且开口向下,其对称轴为,当时,有最大值为万元,答:月销售量为8辆时,销售利润最大,最大利润是32万元【考点】本题考查待定系数法求一次函数解析式以及二次函数的应用,读懂题意,根据题中已知条件列出表达式是解决本题的关键3、(1); (2)第6天时,该企业利润最大,为1280

    25、0元.(3)7天【解析】【分析】(1)根据题意确定一次函数的解析式,实际问题中x的取值范围要使实际问题有意义;(2)求出当天利润与天数的函数解析式,确定其最大值即可;(3)根据(2)中的函数解析式列出不等式方程即可解答【详解】(1)根据题意,得y与x的解析式为:()(2)设当天的当天的销售利润为w元,则根据题意,得当1x6时,w=(1200-800)(2x+20)=800x+8000,8000,w随x的增大而增大,当x=6时,w最大值=8006+8000=12800当6x12时,易得m与x的关系式:m=50x+500w=1200-(50x+500)(2x+20)=-100x2+400x+140

    26、00=-100(x-2)2+14400此时图象开口向下,在对称轴右侧,w随x的增大而减小,天数x为整数,当x=7时,w有最大值,为11900元,1280011900,当x=6时,w最大,且w最大值=12800元,答:该厂第6天获得的利润最大,最大利润是12800元(3)由(2)可得,1x6时, 解得:x3.5则第1-3天当天利润低于10800元,当6x12时,解得x-4(舍去)或x8则第9-12天当天利润低于10800元,故当天销售利润低于10800元的天数有7天【考点】本题主要考查一次函数和二次函数的应用,解题关键在于理解题意,利用待定系数法确定函数的解析式,并分类讨论4、(1);(2);(

    27、3)存在,或 或或【解析】【分析】(1)将A、B两点的坐标分别代入抛物线的解析式中,得关于a、b的二元一次方程组,解方程组即可求得a、b,从而可求得抛物线的函数解析式;(2)过点P作轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,则有,设,则可得E点坐标,从而可分别求得PE、DE,从而求得PE,解由二次函数与一次函数组成的方程组,可求得点C的坐标,进而求得PBC的面积关于m的函数,求出函数的最值即可;(3)设点M的坐标为(p,q),分别求出直线OM、ON的解析式,再求得ON与直线的交点N的坐标,根据OM=ON,即可求出p与q的值,从而求得点M的坐标【详解】(1)将点,代入中,得:解得

    28、该抛物线表达式为 (2)过点P作轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,如图 设点,则点点P、E均位于直线的下方P、E两点的纵坐标均为负,点C的坐标为方程组的一个解解这个方程组,得,点B坐标为点C的横坐标为(其中)这个二次函数有最大值,且当时,的最大值为(3)存在设M(p,q),其中,且p0, 则直线OM的解析式为:由于ONOM,则直线ON的解析式为: 解方程组 ,得, 即点N的坐标为 ,且OM=ON 即 或把代入两式中并整理,得: 或 解方程得: , (舍去)当时,;当时,;当时,故点M的坐标分别为:或或当p=0时,则q=3,即M(0,3),而,且OMOB即此时点M也满足题

    29、意 综上所述,满足题意的点M的坐标为或或或【考点】本题是二次函数的压轴题,也是中考常考题型,它考查了待定系数法求二次数解析式,二次函数的图象,求二次函数的最值,平面直角坐标系中图象旋转问题,解方程组,勾股定理等知识,运算量较大,这对学生的运算能力提出了更高的要求;求三角形面积时用到图形的割补方法,这是在平面直角坐标系中求图象面积常用的方法5、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根

    30、据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围【详解】(1)由题意得: 故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700240,解得x46,设利润为w=(x-30)y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,-100,x50时,w随x的增大而增大,x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=5,x1=55,x2=45,如图所示,由图象得:当45x55时,捐款后每天剩余利润不低于3600元【考点】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:基础强化人教版九年级数学上册第二十二章二次函数达标测试练习题(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-958351.html
    相关资源 更多
  • 2016-2017学年高中政治人教版必修4课件:第二单元 单元主干知识 .ppt2016-2017学年高中政治人教版必修4课件:第二单元 单元主干知识 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精编答案.docx小学一年级数学知识点《20以内的退位减法》必刷题精编答案.docx
  • 2016-2017学年高中政治人教版必修4课件:第三单元 第十课 第二框 创新是民族进步的灵魂 .ppt2016-2017学年高中政治人教版必修4课件:第三单元 第十课 第二框 创新是民族进步的灵魂 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第三单元 第八课 第二框 用发展的观点看问题 .ppt2016-2017学年高中政治人教版必修4课件:第三单元 第八课 第二框 用发展的观点看问题 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精编.docx小学一年级数学知识点《20以内的退位减法》必刷题精编.docx
  • 2016-2017学年高中政治人教版必修4课件:第三单元 第九课 第一框 矛盾是事物发展的源泉和动力 .ppt2016-2017学年高中政治人教版必修4课件:第三单元 第九课 第一框 矛盾是事物发展的源泉和动力 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(考试直接用).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(考试直接用).docx
  • 2016-2017学年高中政治人教版必修4课件:第一单元 第二课 第二框 唯物主义和唯心主义 .ppt2016-2017学年高中政治人教版必修4课件:第一单元 第二课 第二框 唯物主义和唯心主义 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第一单元 第三课 第二框 哲学史上的伟大变革 .ppt2016-2017学年高中政治人教版必修4课件:第一单元 第三课 第二框 哲学史上的伟大变革 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(网校专用).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(网校专用).docx
  • 2016-2017学年高中政治人教版必修4课件:第一单元 第三课 第一框 真正的哲学都是自己时代的精神上的精华 .ppt2016-2017学年高中政治人教版必修4课件:第一单元 第三课 第一框 真正的哲学都是自己时代的精神上的精华 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第一单元 第一课 第一框 生活处处有哲学.ppt2016-2017学年高中政治人教版必修4课件:第一单元 第一课 第一框 生活处处有哲学.ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(精选题).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(精选题).docx
  • 2016-2017学年高中政治人教版必修4课件:第4单元 认识社会与价值选择 .ppt2016-2017学年高中政治人教版必修4课件:第4单元 认识社会与价值选择 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 综合探究 .ppt2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 综合探究 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(突破训练).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(突破训练).docx
  • 2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 第9课 第1框 .ppt2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 第9课 第1框 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(完整版).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(完整版).docx
  • 2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 第7课 第2框 .ppt2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 第7课 第2框 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 第7课 第1框 .ppt2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 第7课 第1框 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(夺分金卷).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(夺分金卷).docx
  • 2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 知识整合梳理 .ppt2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 知识整合梳理 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(夺冠).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(夺冠).docx
  • 2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 .ppt2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第2单元 探索世界与追求真理 第6课 第2框 .ppt2016-2017学年高中政治人教版必修4课件:第2单元 探索世界与追求真理 第6课 第2框 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(夺冠系列).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(夺冠系列).docx
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(基础题).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(基础题).docx
  • 2016-2017学年高中政治人教版必修4课件:第2单元 探索世界与追求真理 .ppt2016-2017学年高中政治人教版必修4课件:第2单元 探索世界与追求真理 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第1单元 生活智慧与时代精神 第3课 第2框 .ppt2016-2017学年高中政治人教版必修4课件:第1单元 生活智慧与时代精神 第3课 第2框 .ppt
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1