《名校推荐》海南省海口市第一中学人教版高中数学选修2-3说课:2-4正态分布.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 名校推荐 名校 推荐 海南省 海口市 第一 学人 高中数学 选修 正态分布
- 资源描述:
-
1、正态分布说课稿海口市第一中学 冯钰雯海口一中 冯钰雯一、教材分析正态分布是高中新教材人教A版选修2-3的第二章“随机变量及其分布”的最后一节内容,在学习了离散型随机变量之后,正态分布作为连续型随机变量,在这里既是对前面内容的一种补充,也是对前面知识的一种拓展,是必修三第三章概率知识的后续。该节内容通过研究频率分布直方图、频率分布折线图、总体密度曲线,引出拟合的函数式,进而得到正态分布的概念、分析正态曲线的特点,最后研究了它的应用。旧教材采用直接给出正态分布密度函数表达式的方法,这使学生在很长一段时间里不理解正态分布的来源。新教材利用高尔顿板引入正态分布的密度曲线更直观,易于解释曲线的来源。正态
2、分布是描述随机现象的一种最常见的分布,在现实生活中有非常广泛的应用。在这里学习正态分布,也有利于学生在大学阶段的进一步学习。二、教学目标1知识与技能 通过高尔顿板试验,了解正态分布密度曲线的来源 通过借助几何画板,理解正态分布的概念及其曲线特点,掌握利用原则解决一些简单的与正态分布有关的概率计算问题2过程与方法 通过试验、频率分布直方图、折线图认识正态曲线,体验从有限到无限的思想方法 通过观察正态曲线研究正态曲线的性质,体会数形结合的方法,增强观察、分析和归纳的能力3、情感态度与价值观 通过经历直观动态的高尔顿试验,提高学习数学的兴趣 通过原则的学习,充分感受数学的对称美三、重点、难点重点:正
3、态分布密度曲线的特点,利用原则解决一些简单的与正态分布有关的概率计算问题难点:正态分布密度曲线的特点四、教学过程教学环节教学内容师生互动设计意图 以境激情通过FLASH动画对高尔顿板试验进行演示。教师创设情境,为导入新知做准备。学生感悟体验,对试验的结果进行定向思考。学生经过观察发现:下落的小球在槽中的分布是有规律的。教师利用多媒体进行动态演示,能提高学生的学习积极性,提高学习数学的兴趣。研探论证1用频率分布直方图从频率角度研究小球的分布规律 将球槽编号,算出各个球槽内的小球个数,作出频率分布表。 以球槽的编号为横坐标,以小球落入各个球槽内的频率与组距的比值为纵坐标,画出频率分布直方图。连接各
4、个长方形上端的中点得到频率分布折线图。 将高尔顿板下面的球槽去掉,试验次数增多,频率分布直方图无限分割,于是折线图就越来越接近于一条光滑的曲线。引导学生思考回顾,教师通过课件演示作图过程。在这里引导学生回忆得到,此处的纵坐标为频率除以组距。教师提出问题:这里每个长方形的面积的含义是什么?学生经过回忆,容易得到:长方形的面积代表的是相应区间内数据的频率教师引导学生得到:此时小球与底部接触时的横坐标是一个连续型随机变量。教师通过课件动态演示频率分布直方图无限分割的过程。通过把与新内容有关的旧知识抽出来作为新知识的“生长点”,为引入新知搭桥铺路,形成正迁移。通过这里的思考回忆,加深了对频率分布直方图
5、的理解。这个步骤实现了由离散型随机变量到连续型随机变量的过渡。通过几何画板让学生直观感受正态曲线的形成过程。教学环节教学内容师生互动设计意图研探论证2正态曲线:曲线中任意的一个均对应着唯一的一个值,经过拟合,这条曲线是(或近似地是)下列函数的图象: ,其中是圆周率,是自然对数的底,实数和(0)为参数。我们称的图象为正态分布密度曲线,简称正态曲线。与分别反映的是均值与标准差。教师提出课题并板书:正态分布教师分析正态分布密度曲线表达式的特点,并指出两个参数的实际意义。与旧教材不同的是,该处在学生从形的角度直观认识了正态曲线之后才给出曲线对应的表达式,这样处理能更直观演示正态曲线来源。3正态曲线对应
6、的解析式中含有两个参数和。下面结合函数解析式研究曲线特点,并分析参数和对曲线的影响: 固定的值,观察对图象的影响 学生研探新知,并进行推理论证。其中教师对学生进行学法指导,优化学生思维。教师利用几何画板,先后固定参数和,通过变化参数和的值得到一系列正态曲线,学生观察图象,分组讨论并派代表发言。学生通过观察得到:当一定时,曲线随着的变化而沿轴平移;结合解析式分析知时它是个偶函数,于是参数决定了正态曲线的对称轴,时的图象可由时的图象平移得到。(教师板书:曲线是单峰的,它关于直线对称)同时得到:曲线在时达到峰值(教师板书)。针对解析式中含有两个参数,学生较难独立分析,教师通过固定一个参数,讨论另一个
7、参数对图象的影响,这样的处理大大降低了难度。该环节教师利用多媒体引导学生归纳正态曲线的特点,既加强了学生的直观理解,也增强了学生观察归纳的能力。教学环节教学内容师生互动设计意图研探论证 固定的值,观察对图象的影响 综合以上图象,你还能得到正态曲线的哪些特点?学生通过观察并结合参数与的意义可以分析得到:当一定时,影响了曲线的形状。即:越小,偏离均值的程度越小,则曲线越瘦高;越大,偏离均值的程度越大,则曲线越矮胖(教师板书)。综合以上的图象并结合解析式分析得到:曲线位于轴上方,与轴不相交。(教师板书)。最后引导学生由概率知识知:曲线与轴之间的面积为1(教师板书)。该环节通过几何画板呈现了教学中难以
8、呈现的课程内容,很好地锻炼了学生观察归纳的能力,体现了归纳分类、化难为易、数形结合的思想。这样的处理很好地突出了重点,突破了难点。这为接下来提出问题,引入正态分布的定义做铺垫。4曲线与轴之间的面积为1。根据对称性知,随机变量落在对称轴两侧的概率都是。请思考:对于任意一个随机变量,如何求出落在给定区间内的概率?Oyx引导学生回忆得到:落在区间的概率的近似值其实就是在上的阴影部分即曲边梯形的面积,曲边梯形面积等于函数在区间上的定积分。即:通过设疑,引起学生对问题的深入思考,通过复习、巩固原有知识,以确保新内容的自然引入,同时加深了对定积分几何意义的理解。教学环节教学内容师生互动设计意图研探论证5
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-240076.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
