2022届高中数学 微专题73 求参数的取值范围练习(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高中数学 微专题73 求参数的取值范围练习含解析 2022 高中数学 专题 73 参数 范围 练习 解析
- 资源描述:
-
1、微专题73 求参数的取值范围一、基础知识: 求参数的取值范围宏观上有两种思路:一个是通过解不等式求解,一个是利用函数,通过解函数的值域求得参数范围1、解不等式:通过题目条件建立关于参数的不等式,从而通过解不等式进行求解。常见的不等关系如下:(1)圆锥曲线上的点坐标的取值范围 椭圆(以为例),则, 双曲线:(以为例),则(左支)(右支) 抛物线:(以为例,则(2)直线与圆锥曲线位置关系:若直线与圆锥曲线有两个公共点,则联立消元后的一元二次方程 (3)点与椭圆(以为例)位置关系:若点在椭圆内,则 (4)题目条件中的不等关系,有时是解决参数取值范围的关键条件2、利用函数关系求得值域:题目中除了所求变
2、量,还存在一个(或两个)辅助变量,通过条件可建立起变量间的等式,进而可将等式变形为所求变量关于辅助变量的函数,确定辅助变量的范围后,则可求解函数的值域,即为参数取值范围(1)一元函数:建立所求变量与某个辅助变量的函数关系,进而将问题转化为求一元函数的值域,常见的函数有: 二次函数;“对勾函数”; 反比例函数; 分式函数。若出现非常规函数,则可考虑通过换元“化归”为常规函数,或者利用导数进行解决。(2)二元函数:若题目中涉及变量较多,通过代换消元最后得到所求参数与两个变量的表达式,则可通过均值不等式,放缩消元或数形结合进行解决。3、两种方法的选择与决策:通常与题目所给的条件相关,主要体现在以下几
3、点:(1)若题目中含有某个变量的范围,则可以优先考虑函数的方向,将该变量视为自变量,建立所求变量与自变量的函数关系,进而求得值域(2)若题目中含有某个表达式的范围(或不等式),一方面可以考虑将表达式视为整体,看能否转为(1)的问题进行处理,或者将该表达式中的项用所求变量进行表示,从而建立起关于该变量的不等式,解不等式即可二、典型例题:例1:已知椭圆,、是其左右焦点,离心率为,且经过点.(1)求椭圆的标准方程; (2)若分别是椭圆长轴的左右端点,为椭圆上动点,设直线斜率为,且,求直线斜率的取值范围;解:(1) 椭圆方程为:代入可得: 椭圆方程为: (2)由(1)可得: 设,则 在椭圆上 即例2:
4、已知椭圆的离心率为,其左,右焦点分别是,过点的直线交椭圆于两点,且的周长为 (1)求椭圆的方程(2)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),当时,求实数的取值范围解:(1) 的周长 椭圆方程为: (2)设直线的方程为, 联立直线与椭圆方程: ,解得: ,代入可得: 由条件可得: ,代入可得: 例3:在平面直角坐标系中,已知椭圆的离心率为,且在所有过焦点的弦中,弦长的最小值为(1)求椭圆方程(2)若过点的直线 与椭圆交于不同的两点(在之间),求三角形与三角形面积比值的范围解:(1) 由椭圆性质可得,焦点弦的最小值为 椭圆方程为 (2)设, 联立直线与椭圆方程: 同号
5、设,所解不等式为: ,即例4:已知椭圆的离心率为,直线与以原点为圆心,椭圆的短半轴长为半径的圆相切(1)求椭圆的方程(2)设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于直线,垂足为点,线段的垂直平分线交于点,求点的轨迹的方程(3)设与轴交于点,不同的两点在上,且满足,求的取值范围解:(1) 与圆相切 即,解得(2)由(1)可得 线段的垂直平分线交于点即的轨迹为以为焦点,为准线的抛物线,设为 (3)思路:由已知可得,设,则所求为关于的函数,只需确定的范围即可,因为,所以有可能对的取值有影响,可利用此条件得到关于的函数,从而求得范围。解:与椭圆的交点为,设,因为,化简可得:
6、考虑由可得时,可得例5:已知椭圆的离心率,左焦点为,椭圆上的点到距离的最大值为(1)求椭圆的方程(2)在(1)的条件下,过点的直线与圆交于两点,与点的轨迹交于两点,且,求椭圆的弦长的取值范围解:(1)由离心率可得: 依题意可得: 可得:椭圆方程为:(2)由(1)可得椭圆方程为 不妨设 当直线斜率不存在时,符合题意,可得: 当直线斜率存在时,设直线 在圆中 可得:解得:设,联立直线与椭圆方程:消去可得: 由可得:综上所述:的取值范围是例6:已知椭圆的两个焦点,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为(1)求椭圆的方程(2)如图,以椭圆的长轴为直径作圆,过直线上的动点,作圆的两
7、条切线,设切点分别为,若直线与椭圆交于不同的两点,求的取值范围解:(1)使得的点恰有两个的最大值为为短轴顶点时,到焦点的距离的最大值为椭圆的方程:(2)由椭圆方程可得圆设,由圆的性质可得:代入可得:满足方程则到的距离下面计算:联立方程设不妨设设,所以设在单调递增所以,即例7:已知椭圆过点,且离心率(1)求椭圆方程(2)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围解:(1)可得:椭圆方程为,代入可得:椭圆方程为:设,联立方程可得: 设中点,则则的中垂线为:,代入可得:,代入可得:或即的取值范围是例8:在平面直角坐标系中,原点为,抛物线的方程为,线段是抛物线的一条动弦(1)求
8、抛物线的准线方程和焦点坐标;(2)当时,设圆,若存在且仅存在两条动弦,满足直线与圆相切,求半径的取值范围?解:(1)由抛物线可得:,准线方程: (2)设直线, ,联立方程: 与圆相切 ,不妨令 则,令 在单调递减,在单调递增 则若关于的方程有两解,只需关于的方程有一解时,与有一个交点 例9:已知椭圆的离心率为,是椭圆的两个焦点,是椭圆上任意一点,且的周长是 (1)求椭圆的方程(2)设圆,过椭圆的上顶点作圆的两条切线交椭圆于两点,当圆心在轴上移动且时,求的斜率和取值范围解:(1) 的周长 椭圆方程为: (2)由椭圆方程可得: ,设过且与圆相切的直线方程为 ,整理可得: 两条切线斜率是方程的两根联
9、立直线与椭圆方程可得:消去可得: ,同理可得: 由可得: 设,可知为增函数, 例10:已知椭圆,其中为左右焦点,且离心率为,直线与椭圆交于两不同点,当直线过椭圆右焦点且倾斜角为时,原点到直线的距离为(1)求椭圆的方程(2)若,当的面积为时,求的最大值解:(1)设直线 椭圆方程为(2)若直线斜率存在,设, 联立方程:消去可得:,整理可得:考虑即等号成立条件:时的最大值是当斜率不存在时,关于轴对称,设,再由可得:可计算出所以综上所述的最大值是三、历年好题精选1、已知点是双曲线上的动点,分别是双曲线的左右焦点,为坐标原点,则的取值范围是( )A. B. C. D. 2、(2015,新课标I)已知是双
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
