2022高考数学文人教A版一轮复习学案:8-4 直线、平面平行的判定与性质 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022高考数学文人教A版一轮复习学案:8-4直线、平面平行的判定与性质 WORD版含解析 2022 高考 数学 文人 一轮 复习 直线 平面 平行 判定 性质 WORD 解析
- 资源描述:
-
1、8.4直线、平面平行的判定与性质必备知识预案自诊知识梳理1.直线与平面平行的判定与性质判定性质定义定理图形条件结论aaab2.面面平行的判定与性质判定性质定义定理图形条件,a结论aba1.平面与平面平行的三个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.2.判断两个平面平行的三个结论(1)垂直于同一条直线的两个平面平行.(2)平行于同一平面的两个平面平行.(3)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.考点自诊1.判断下列结论是否正
2、确,正确的画“”,错误的画“”.(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.()(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.()(3)若直线a与平面内无数条直线平行,则a.()(4)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(5)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()2.已知平面,直线m,n,满足n,则“mn”是“m”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(2020广东湛江高三一模)已知直线a,b,平面,a,b,则a,b是的()A.充分不必要
3、条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(2020安徽宣城高三模考)如图,在三棱柱ABC-A1B1C1中,M,N分别为棱AA1,BB1的中点,过MN作一平面分别交底面三角形ABC的边BC,AC于点E,F,则下列说法正确的是()A.MFNEB.四边形MNEF为梯形C.四边形MNEF为平行四边形D.A1B1NE5.(2020辽宁朝阳模拟)如图,平面平面,PAB所在的平面与平面,分别交于CD,AB,若PC=2,CA=3,CD=1,则AB=.关键能力学案突破考点证明空间直线与平面平行【例1】(一题多解)如图,在四棱锥E-ABCD中,ABCD,ABC=90,CD=2AB=2CE
4、=4,点F为棱DE的中点.证明:AF平面BCE.思考判断或证明线面平行的常用方法有哪些?解题心得1.判断或证明线面平行的常用方法有:(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a,b,aba);(3)利用面面平行的性质(,aa).2.证明线面平行往往先证明线线平行,证明线线平行的途径有:利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行.对点训练1(2020河北唐山模拟)如图,在直三棱柱ABC-A1B1C1中,点M,N分别为线段A1B,AC1的中点.求证:MN平面BB1C1C.考点证明空间两条直线平行【例2】如图,在四棱锥
5、P-ABCD中,底面ABCD是菱形且ABC=120,点E是棱PC的中点,平面ABE与棱PD交于点F.(1)求证:EFCD;(2)略.思考空间中证明两条直线平行的常用方法有哪些?解题心得空间中证明两条直线平行的常用方法(1)利用线面平行的性质定理,即a,a,=bab.(2)利用平行公理推论:平行于同一直线的两条直线互相平行.(3)利用垂直于同一平面的两条直线互相平行.对点训练2(2020湖南岳阳模拟)如图,平面ABEF平面ABCD,四边形ABEF与四边形ABCD都是直角梯形,BAD=FAB=90,BC12AD,BE12FA,G,H分别为FA,FD的中点.(1)求证:四边形BCHG是平行四边形;(
6、2)求证:C,D,E,F四点共面.考点证明空间两平面平行【例3】(2020浙江温州模拟)如图,在多面体ABCDEF中,四边形ABCD是正方形,BF平面ABCD,DE平面ABCD,BF=DE,M为棱AE的中点.(1)求证:平面BDM平面EFC;(2)若AB=1,BF=2,求三棱锥A-CEF的体积.思考判断或证明面面平行的方法有哪些?解题心得判定面面平行的方法(1)利用定义:即证两个平面没有公共点(不常用).(2)利用面面平行的判定定理(主要方法).(3)利用垂直于同一条直线的两平面平行(客观题可用).(4)利用平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(客观题可用).对点
7、训练3(2020河北邯郸二模)如图,在四棱锥P-ABCD中,ABC=ACD=90,BAC=CAD=60,PA平面ABCD,PA=2,AB=1.设M,N分别为PD,AD的中点.(1)求证:平面CMN平面PAB;(2)求三棱锥P-ABM的体积.考点平行关系中的存在问题【例4】(2020河南南阳高三二模)在直角梯形ABCD中(如图1),ABDC,BAD=90,AB=5,AD=2,CD=3,点E在CD上,且DE=2,将ADE沿AE折起,使得平面ADE平面ABCE(如图2),G为AE的中点.(1)求四棱锥D-ABCE的体积;(2)在线段BD上是否存在点P,使得CP平面ADE?若存在,求BPBD的值;若不
8、存在,请说明理由.思考解决存在性问题的一般思路是什么?解题心得解决存在问题一般先假设求解的结果存在,从这个结果出发,寻找使这个结论成立的充分条件,若找到了使结论成立的充分条件,则存在;若找不到使结论成立的充分条件(出现矛盾),则不存在.而对于探求点的问题,一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.对点训练4如图,在空间几何体ABCDE中,BCD与CDE均为边长为2的等边三角形,ABC为腰长为13的等腰三角形,平面CDE平面BCD,平面ABC平面BCD.试在平面BCD内作一条直线,使直线上任意一点F与A的连线AF均与平面CDE平行,并给出详细证明.1.平行关系的
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-245867.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
小学三年级下册语文课件-第五单元第20课 妈妈的账单|人教新课标版 (共36张PPT).ppt
