2022届高考数学一轮复习核心素养测评第2章2.3函数的奇偶性对称性与周期性含解析新人教B版.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 一轮 复习 核心 素养 测评 2.3 函数 奇偶性 对称性 周期性 解析 新人
- 资源描述:
-
1、核心素养测评 五函数的奇偶性、对称性与周期性(30分钟60分)一、选择题(每小题5分,共25分)1.下列函数中,与函数y=-3|x|的奇偶性相同,且在(-,0)上单调性也相同的是()A.y=-B.y=log2|x|C.y=1-x2D.y=x3-1【解析】选C.函数y=-3|x|为偶函数,在(-,0)上为增函数,选项B的函数是偶函数,但其单调性不符合,只有选项C符合要求.【变式备选】下列函数中,既是偶函数,又在(0,+)上单调递增的函数是()A.y=B.y=|x|+1C.y=-x2+1D.y=2-|x|【解析】选B.因为y=是奇函数,y=|x|+1,y=-x2+1,y=2-|x|均为偶函数,所以
2、A错误;又因为y=-x2+1,y=2-|x|=在(0,+)上均为减函数,只有y=|x|+1在(0,+)上为增函数,所以C,D错误.2.已知函数f(x)=的图象关于原点对称,g(x)=ln (ex+1)-bx是偶函数,则logab=()A.1B.-1C.-D.【解析】选B.由题意得f(0)=0,所以a=2.因为g(1)=g(-1),所以ln (e+1)-b=ln +b,所以b=,所以log2=-1.3.x为实数,x表示不超过x的最大整数,则函数f(x)=x-x在R上为()A.奇函数B.偶函数C.增函数D.周期函数【解析】选D.函数f(x)=x-x在R上的图象如图:所以f(x)在R上是周期为1的函
3、数.4.已知f(x)是定义在R上的奇函数,当x0时,f(x)=x2+2x,若f(2-a2)f(a),则实数a的取值范围是()A.(-,-1)(2,+)B.(-1,2)C.(-2,1)D.(-,-2)(1,+)【解析】选C.因为f(x)是奇函数,所以当xf(a),得2-a2a,解得-2a0时,f(x)=x2-x,则当x0时,f(x)=x2-x,则当x0的解集为_.世纪金榜导学号【解析】根据题意,因为f(x)是定义在R上的偶函数,且在区间(-,0上为增函数,所以函数f(x)在0,+)上为减函数,由f(3)=0,则不等式f(1-2x)0f(1-2x)f(3)|1-2x|3,解得-1x2,即不等式的解
4、集为(-1,2).答案:(-1,2)8.定义:函数f(x)在闭区间a,b上的最大值与最小值之差为函数f(x)的极差.若定义在区间-2b,3b-1上的函数f(x)=x3-ax2-(b+2)x是奇函数,则a+b=_,函数f(x)的极差为_.世纪金榜导学号【解析】由f(x)在-2b,3b-1上为奇函数,所以区间关于原点对称,故-2b+3b-1=0,解得b=1,又由f(-x)+f(x)=0可求得a=0,所以a+b=1.又f(x)=x3-3x,f(x)=3x2-3,易知f(x)在(-2,-1),(1,2)上单调递增,f(x)在(-1,1)上单调递减,所以在-2,2上的最大值、最小值分别为f(-1)=f(
5、2)=2,f(1)=f(-2)=-2,所以极差为4.答案:14三、解答题(每小题10分,共20分)9.已知函数f(x)=是奇函数.世纪金榜导学号(1)求实数m的值.(2)若函数f(x)在区间-1,a-2上单调递增,求实数a的取值范围.【解析】(1)设x0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x).于是x0时,f(x)=x2+2x=x2+mx,所以m=2.(2)要使f(x)在-1,a-2上单调递增,结合f(x)的图象知所以1f(2a)f(0)B.f(a)f(0)f(2a)C.f(2a)f(a)f(0)D.f(2a)f(0)f(a)【解
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-246895.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
专题11 古诗词阅读(课件)--小升初衔接语文课件.ppt
