2023届高考数学一轮复习作业 利用导数研究不等式恒(能)成立问题 北师大版.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届高考数学一轮复习作业 利用导数研究不等式恒能成立问题 北师大版 2023 高考 数学 一轮 复习 作业 利用 导数 研究 不等式 成立 问题 北师大
- 资源描述:
-
1、利用导数研究不等式恒(能)成立问题 1设f (x)xln x,g(x)x3x23(1)如果存在x1,x20,2使得g(x1)g(x2)M成立,求满足上述条件的最大整数M;(2)如果对于任意的s,t,都有f (s)g(t)成立,求实数a的取值范围解(1)存在x1,x20,2使得g(x1)g(x2)M成立,等价于g(x1)g(x2)maxM由g(x)x3x23,得g(x)3x22x3x令g(x)0得x0或x,令g(x)0得0x,又x0,2,所以g(x)在区间上单调递减,在区间上单调递增,所以g(x)ming,又g(0)3,g(2)1,所以g(x)maxg(2)1故g(x1)g(x2)maxg(x)
2、maxg(x)minM,则满足条件的最大整数M4(2)对于任意的s,t,都有f (s)g(t)成立,等价于在区间上,函数f (x)ming(x)max,由(1)可知在区间上,g(x)的最大值为g(2)1在区间上,f (x)xln x1恒成立等价于axx2ln x恒成立设h(x)xx2ln x,h(x)12xln xx,令m(x)xln x,由m(x)ln x10得x即m(x)xln x在上是增函数,可知h(x)在区间上是减函数,又h(1)0,所以当1x2时,h(x)0;当x1时,h(x)0即函数h(x)xx2ln x在区间上单调递增,在区间(1,2)上单调递减,所以h(x)maxh(1)1,所
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-296632.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
