江苏省泰州中学2023-2024学年高三数学上学期期初调研考试试卷(Word版附解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 泰州 中学 2023 2024 学年 数学 上学 期期 调研 考试 试卷 Word 解析
- 资源描述:
-
1、2023-2024学年秋学期高三年级期初调研考试数学学科试卷时间: 120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则( )A. B. C. D. 【答案】C【解析】【分析】化简集合B,利用并集概念及运算即可得到结果.【详解】由题意可得:又故选:C【点睛】本题考查并集的概念及运算,考查分式不等式的解法,属于基础题.2. 已知复数, 则( )A. B. C. D. 【答案】B【解析】【分析】根据复数的运算,得到,再根据复数的模长公式即可得到结果.【详解】因为则,所以故选:B.3. 已知等比数列的前项和为
2、,且,成等差数列,则数列的公比( )A. 1或B. 或C. D. 【答案】A【解析】【分析】根据等差中项的性质及等比数列通项公式计算可得.【详解】,成等差数列,即,整理得,即,解得或.故选:A4. 若双曲线的焦距为6,则该双曲线的离心率为( )A. B. C. 3D. 【答案】A【解析】【分析】直接求出k,即可求出离心率.【详解】因为为双曲线,所以,化为标准方程为:.由焦距为6可得:,解得:k=1.所以双曲线为.所以双曲线的离心率为.故选:A5. 向量旋转具有反映点与点之间特殊对应关系的特征,在电子信息传导方面有重要应用.平面向量旋转公式在中学数学中用于求旋转相关点的轨迹方程具有明显优势,已知
3、对任意平面向量,把绕其起点沿逆时针方向旋转角得到向量,叫做把点B绕点A沿逆时针方向旋转角得到点P.已知平面内点,点,把点B绕点A沿顺时针方向旋转后得到点P,则点P的坐标为( )A. B. C. D. 【答案】D【解析】【分析】先求出的坐标,再根据旋转角求出的坐标,然后设出点P的坐标,解出即可.【详解】解:由题意可知,把点绕点A逆时针方向旋转,得到点,设,则,所以,解得,所以点的坐标为,故选:D.6. 已知,则( )A. B. C. D. 【答案】C【解析】【分析】根据同角三角函数的基本关系求出,再根据利用两角和的余弦公式计算可得.【详解】解:因为,所以,又,所以,所以故选:C7. 已知函数(,
4、)的部分图象如图所示,则的值为( )A. B. C. D. 【答案】C【解析】【分析】利用给定图象求出,进而求出即得函数解析式,再代入求解作答.【详解】由,得,由,又,得,观察图象知,解得,则,因此,所以故选:C8. 若关于的方程有三个不等的实数解,且,其中,为自然对数的底数,则的值为( )A. B. C. D. 【答案】B【解析】【分析】令,则有,令函数,画出其图象,结合图象可得关于的方程一定有两个实根,且,即可求解【详解】解:由关于的方程,令,则有,令函数,则,当时,当时,在上单调递增,在上单调递减,其图象如下:要使关于的方程有3个不相等的实数解,且,结合图象可得关于的方程一定有两个实根,
5、且,由韦达定理知,又,可得,故选:B【点睛】关键点点睛:本题解答的关键是通过换元,将较复杂的方程转化为一元二次方程,再利用导数工具说明函数的单调性.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知,下列结论正确的是( )A. 的最小值为9B. 的最小值为C. 最小值为D. 的最小值为【答案】AD【解析】【分析】根据基本不等式、二次函数的性质和对数运算性质判断各选项即可.【详解】因为,所以,当且仅当,即时取等号,取得最小值9,故A正确;,根据二次函数的性质可知,当,时,取得最小值,故B错误
6、;因为,即,当且仅当,即时取等号,所以,即最大值,故C错误;,当且仅当,即时取等号,此时取得最小值,故D正确故选:AD10. “天宫课堂”是为发挥中国空间站的综合效益,推出的首个太空科普教育品牌.为了解学生对“天宫课堂”的喜爱程度,某学校从全校学生中随机抽取200名学生进行问卷调查,得到以下数据,则( )喜欢天宫课堂不喜欢天宫课堂男生8020女生7030参考公式及数据:,.当时,.A. 从这200名学生中任选1人,已知选到的是男生,则他喜欢天宫课堂的概率为B. 用样本的频率估计概率,从全校学生中任选3人,恰有2人不喜欢天宫课堂的概率为C. 根据小概率值的独立性检验,认为喜欢天宫课堂与性别没有关
7、联D. 对抽取的喜欢天宫课堂的学生进行天文知识测试,男生的平均成绩为80,女生的平均成绩为90,则参加测试的学生成绩的均值为85【答案】BC【解析】【分析】根据古典概型的概率公式判断A,首先求出样本中喜欢天宫课堂的频率,再根据独立重复试验的概率公式判断B,计算出卡方,即可判断C,根据平均公式判断D.【详解】对于A:从这200名学生中任选1人,已知选到的是男生,则他喜欢天宫课堂的概率,故A错误;对于B:样本中喜欢天宫课堂的频率,从全校学生中任选3人,恰有2人不喜欢天宫课堂的概率,故B正确;对于C:因为,所以根据小概率值的独立性检验,认为喜欢天宫课堂与性别没有关联,故C正确;对于D:抽取的喜欢天宫
8、课堂的学生男、女生人数分别为、,又男生的平均成绩为,女生的平均成绩为,所以参加测试的学生成绩的均值为,故D错误;故选:BC11. (多选题)如图,正方体的棱长为,线段上有两个动点,且,以下结论正确的有( )A. B. 点到平面的距离为定值C. 三棱锥的体积是正方体体积的D. 异面直线,所成的角为定值【答案】ABC【解析】【分析】由线面垂直推出异面直线垂直可判断A;由点到平面的距离可判断B;运用三棱锥的体积公式可判断C;根据异面直线所成角的定义判断D.【详解】解:对于,根据题意,且,所以平面,而平面,所以,所以正确;对于,到平面距离是定值,所以点到的距离为定值,所以正确;对于,三棱锥的体积为,三
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-319791.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
