人教版数学七年级上册期末计算题100例附解析(3).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 数学 年级 上册 期末 算题 100 解析
- 资源描述:
-
1、人教版数学七年级上册期末计算题100例附解析(3)1.计算: (1)(+12)+(21); (2)(12)(13) 2.解方程:2x13=x+22+1.3.先化简,再求值: 2(12b1)3(13a2+b2) ,其中a=-1,b=1.4.化简 (1)3(53x24x+3)5(x23x+2) (2)-2x23x22(52x32)+5x 5.解方程: x0.7 1.72x0.3 =1 6.计算:22( 791112+16 )365 7.计算:(1)4019+24 (2)(5)(8)(28)4(3)12+5671212 (4)22222312011(5)3294+40.52+22911228.计算:
2、 (1)把37.37化为度、分、秒; (2)把133748化为度 9.619 (1 12 ) 1924 ; 10.已知方程 (a4)x|a|3+2=0 是关于x的一元一次方程,求a的值 11.计算:(1)2(3)0+22 12.若多项式4xn+25x2n+6是关于x的三次多项式,求代数式n22n+3的值 13.计算:7+( 15 )-4-(-0.2) 14.已知:|a|=5,|b-1|=8,且a-b0,求a+b的值。 15.计算: (1) 12230 (1)(12)2(3)0 ; (2)8a33a5a2 (3)4ab(2a2b2ab+3) ; (4)(x+y)2(xy)(x+y) 16.解方程
3、: x+12+32x3=1 17.计算 (1)(12.56)(7.25)3.01(10.01)7.25; (2)0.47(0.09)0.39(0.3)1.53; (3)513+(423)+(613) ; (4)23(72)(22)57(16); (5)356+(315)+(256)+415+(2) ; (6)2.25+(-4 14 )+(-2.5)+2 12 +3.4+(- 175 ) (7)5611+(3.125)+(747)+(3411)+818+(367)+(2211)+637 18.先化简,再求值: 3a2b2a2b6(ab23a2b)+4ab3ab ,其中 a=3 , b=13 19
4、.已知有理数a,b,c在数轴上的对应点分别是A,B,C其位置如图所示, 化简 |a|+2|b+c|3|ac|4|a+b| 20.解一元一次方程: 3x24 5x+26 =1x 21.去括号,并合并相同的项:(y+x)(5x2y) 22.如果关于x的多项式5x2(2yn+1mx2)3(x2+1)的值与x的取值无关,且该多项式的次数是三次求m,n的值 23.解方程: 4x132x+16=1 24.先去括号,再合并同类项:3(2x2y2)2(3y22x2)25.12(x3)+1=x13(x2) 26.计算:(x2)2(x+3)(x3) 27.100(2)2(2)(2) 28.计算下列各题: (1)(
5、1 16 + 34 )(48) (2)14(10.5) 13 2(3)2 29.计算: (1)2017(7) (2)3(2)(28)7 (3)(19-16-118)36 (4)23+3(1)2010(2)2 30.解方程:(1) 2(x-2)=3(4x-1)+9(2) x20.2x+30.5=231.计算:(1)2a3b(3ab2)2;(2)(14)23+(23)(1)201632.已知 |m|=4 , |n|=6 ,且 |m+n|=m+n ,求 mn 的值. 33.计算 (1)20070+22( 12 )2+2009 (2)(2ab)(3a22abb2) (3)(2x2)36x3(x3+2x
6、2x) (4)(2a+3b)2(2ab)(2a+b) (5)(2x5)(2x+5)(2x+1)(2x3) (6)(x3+3)2(x33)2 (7)(x+1)(x+3)(x2)2 (8)(a+b+3)(a+b3) (9)(9x2y6xy2+3xy)( 3xy) (10)化简求值:(3a1)23(25a+3a2),其中 a=13 34.已知 |x8y|+2(4y1)2+3|8z3x|=0 ,求xyz的值 35.计算 (1)34+(8)5(23) (2)5(115)+13(115)3(115) (3)22+3276+(2)9 (4)22(12)+8(2)2+(1)2018 36.用简便方法计算:1.
7、25+2.25+7.75+(8.75) 37.-|-26|+|+28|-(+15) 38.计算: (1)|2|+(+3)0(12)3 (2)a5(2a)3+a6(3a)2 (3)(4a26ab+2a)2a (4)2018220172019 (用乘法公式) 39.解方程 (1)3(3x+5)=2(2x1) (2)x230.5=5x6 40.计算: (1)18x3yz (13y2z)3 16 x2y2z; (2)(a3+2)2 - (a32)2 . 41.计算: (1)(56)(4738+114) ; (2)(18)94+(2)3(12)(32) . 42.计算题: (1)23+17+(7)+(1
8、6) (2)(5 14 )(3.5) (3)( 23 )( 34 ) (4)23 +( 15 )+(1)+ 13 . 43.计算题 (1)8(3)+2+(6) (2)223(3)23 44.解一元一次方程: (1)7x53x1 (2)y142=2y36 45.计算: (1)12(9)+|7|4 (2)(12)(4334+56) (3)(2)25234 ; (4)8x+2y+(5xy) 46. 先化简,再求值: (1)4a3a233a3(a4a3),其中a2; (2)2x2y2xy2(3x2y23x2y)(3x2y23xy2),其中x1,y2. 47.解下列方程 (1)3x-4=x (2)x12
9、=1x14 48. 计算: (1)1.3-(-2.7); (2)(-13)-(-17); (3)(-1.8)-(+4.5); (4)6.38-(-2.62); (5)(14)(13) ; (6)(6.25)(314) 49.解方程 (1)2(2x1)=1(3x) (2)x0.32x10.7=1 50.计算: (1)( 16 34 512 ) 12 (2)(81)21449(16) 51.先化简再求值: (1)(4a23a)(14a+4a2),其中a=2 (2)2(mn3m2)m25(mnm2)+2mn,其中m=1,n=2 52.计算: (1)(8)10(3)2 (2)(1456+38)24 (
10、3)12(23)(54)(14) (4)12+(4)2(13)2(12)3 53.先化简,再求值: 3(x22xy)3x22y+2(xy+y) ,其中 x=12,y=3 54.(0.19)(3.11) 55.计算题: (1)2(12)(+23) (2)(2)27(3)(6)|5| 56. 计算: (1)283246+153648; (2)(30-2340) 57.化简:3(x2-xy)+2(3x2+2xy) 58.计算:142(3)2(12)3 59.1+(-2)+3+(-4)+ +2017+(-2018) 60.解方程 2x+563x28=1 61.计算: (1)(7956+518)(18)
11、 (2)-22+3x(-1)4-(-4)5 (3)(+1317)+(3.5)+(6)+(+2.5)+(+6)+(+417) 62.解下列方程或方程组: (1)4x3(20x)=6x7(9x) (2)x+12=xx26 (3)2x+y=5xy=1 (4)2x15+3y24=212x15y=6 63.解方程 (1)5x3=22 ; (2)3x2=5x4 (3)5(3x1)=2(4x+2)8 ; (4)2x13=1+4x51 64.计算: (1)22+|5| (2)( 29 14 + 118 )( 136 ) 65.若a,b互为相反数, c,d互为倒数,|x|=2,求cd+a+b-x的值. 66.-
12、20+(-14)-(-18)-13 67.合并同类项: (1)5m+2nm3n (2)3a212a5+3aa2 68.先化简,再求值 3(x2yxy2)2(32xy22+x2y)3 ,其中 x=12,y=2 。 69.计算: (1)(12)(8)+(6)2 ; (2)3x=6 . 70.计算: (1)8+|32(2)3|(42)5 . (2)|9|3+( 1223 )12+32; 71.先化简,再求值:(4a23a)(2a2+a1)+(2a2+4a),其中a=2 72.计算: (1)7+11+4+(2); (2) 12 (3 34 )2 12 (1 14 ) (3)2.4+3.54.6+3.5
13、 (4)(8 37 )+(7.5) 47 + 12 73.+15+ (+6); 74.方程2-3(x+1)=0的解与关于x的方程 k+x23k2=2x 的解互为倒数,求k的值 75.解下列方程 (1)3-2(x1)=12(112x) (2)2x+151=2x142x+12 76.解方程: (1)4x1=3 (2)3(2x3)7x=2 77.如果关于x的方程3x5-6k+6=0是一元一次方程,求k的值 78.一个角的补角比这个角的余角的2倍还多40,求这个角的度数 79.计算下列各题: (1)1531942+264028; (2)903572144; (3)3315165; (4)1751630
14、47306+412503 80.利用乘法公式计算: (1)10298 (2)(2x3y)2(y3x)(3xy) (3)(x3y2)(x3y2) 81.计算 (1)14+(56)+23(+12)414 ; (2)23+(16)(14)12 ; (3)3.762377.24347 ; (4)0.125+31418+5230.25 82.计算: (1)(+15)+(213)(245)(+323) ; (2)24+5(3)6( 16 ) 83.解方程:(1)3x+7=23x(2)3(x2)=x(2x1)(3)x12=2x3+1 84. 计算: (1)(-5.8)+(-4.3); (2)(+7)+(-1
15、2); (3)( 823 )+0; (4)(-6.25)+ 614 85.计算 (1)(-8)125+(-4) (12)3(58) (2)-32-12 (1413+1)+4(1315) 86.已知x= 12 是方程 5m+12x=12+x 的解,求关于y的方程my+2=m(1-2y)的解 87.计算下列各题 (1)5(2) (2)|34|+12| (3)5+(1)+(4) (4)0(28)+53 (5)(-4)-(+13)+(-5)-(-9)+7 (6)6143.3(6)(334)+4+3.3 88.计算:-22+(-2) ( 23 )+| 116 |(-2)4 89.先化简,再求值:(2x+
16、3y)22(2x+3y)(2x3y)+(2x3y)2 , 其中x= 12 ,y= 13 90.计算 (1)20+(14)(18)13 (2)121 37 +(12)62(1 34 )2 91.计算: (1)22(57); (2)12(4)(23) . 92.计算:613+(4.6)+(25)2.3(23)93.若(2a-1)2+|2a+b|=0,且|c-1|=2,求c(a3-b)的值 94. (1)解方程: 12x33x=x123 (2)解方程: xx25=2x533 95.计算: (1)4-(-3)(-1)- 8(12)3|-2-3| ; (2)(-5)3(- 35 )-32(-2)2(+
17、54 ). 96.计算 (1)20(16)26(103) ; (2)(10)(13)+1445 . 97.解方程: (1)4x4=6x (2)3x(5x2)=2(x1) (3)x124x23=1 (4)0.2x0.40.5x=0.05x0.20.03 98.计算:14+(2)2|25|+6(1213)99.-15-(-8)+(-11)-12 100.计算: (1)(-1)2019+(3.14-)0; (2)(-2x2)3+4x3x3 答案解析部分1.答案:(1)解:原式=12-21 =-9(2)解:原式= 12+13 = 36+26 = 16 2.答案:解;去分母得:2(2x-1 )=3(x+
18、2)+6 去括号得: 4x-2=3x+6+6 移项合并同类项得:x=14 3.答案解:原式=b-2+a2-3b+6=a2-2b+4 当a=-1,b=1时, 原式=(-1)2-21+4=1-2+4=3. 4.答案:(1)解:原式= 5x212x+95x2+15x10 =3x1 (2)解:原式= -2x2(3x25x+3+5x) =x23 .5.答案解:方程可化为: 10x7 1720x3 =1,去分母得,30x7(1720x)=21,去括号得,30x119+140x=21,移项得,30x+140x=21+119,合并同类项得,170x=140,系数化为1得,x= 14176.答案解:原式=4(2
19、833+6)5 =428+336 15 =5 15 =17.答案解:(1)4019+24=-40+19-24=-45(2)(5)(8)(28)4=(5)(8)+284=40+7=47(3)12+5671212=612+101271212=9(4)22222312011=-4-4+8=0(5)3294+40.52+2291122=949+414+209322=-4+1+5=2 8.答案:(1)解:0.37=(0.3760)=22.2, 0.2=(0.260)=12,所以37.37=372212(2)解:48=(4860)=0.8, 37.8=(37.860)=0.63,所以133748=13.6
20、39.答案解:原式=- 619 23 1924 =- 16 10.答案解:(a4)x|a|3+2=0 是关于x的一元一次方程,a3=1a40 , 解得:a=-4. 11.答案解:原式=11+ 14 = 14 12.答案解:多项式4xn+25x2n+6是关于x的三次多项式,当n+2=3时,此时n=1,n22n+3=12+3=2,当2n=3时,即n=1,n22n+3=1+2+3=4,综上所述,代数式n32n+3的值为2或4 13.答案解:原式=7- 15 -4+ 15 =314.答案解:|a|=5,|b-1|=8, a=5,b-1=8,a=5,b=9或-7,a-b0,当a=5,b=9时,a+b=5
21、+9=14;当a=-5,b=9时,a+b=-5+9=4.故a+b的值为4或1415.答案:(1)解: (12)2(3)0=4-1=3(2)解:原式=8a33a3=5a3(3)解:原式=8a3b34a2b2+12ab(4)解: (x+y)2(xy)(x+y)=x+yx+yx+y2xy+2y2 16.答案解:去分母,得3(x+1)+2(3-2x)=6,去括号,得3x+3+6-4x=6,移项、合并同类项,得-x=-3,化x的系数为1,得x=3。 17.答案:(1)解:(12.56)(7.25)3.01(10.01)7.25=-12.56-7.25+7.25+3.01-10.01=-12.56-7=-
22、19.56;(2)解:0.47(0.09)0.39(0.3)1.53=0.47+1.53+0.39-0.09-0.3=2(3)解: 513+(423)+(613) = 513613423=1423=523(4)解:23(72)(22)57(16)=23+57-72-22-16=80-110=-30(5)解: 356+(315)+(256)+415+(2) = 356256+4153152 =1+1-2=0(6)解:2.25+(-4 14 )+(-2.5)+2 12 +3.4+(- 175 )=2.25-4.25-2.5+2.5+3.4-3.4=-2(7)解: 5611+(3.125)+(747
23、)+(3411)+818+(367)+(2211)+637= 5611341122113.125+818747367+637 =5-5=018.答案解:原式= 3a2b(2a2b6ab+4a2b+4ab)3ab = 3a2b+2a2b+6ab4a2b4ab3ab = a2bab ,当 a=3,b=13 时,原式= 32(13)3(13) = 3+1 = 2 .19.答案解:a0,b0,c0,b+c0,ac0,a+b0,原式=a+2(b+c)+3(ac)+4(a+b)=a+2b+2c+3a3c+4a+4b=6a+6bc 20.答案解:去分母,得3(3x2)2(5x+2)=12(1x) 去括号,得
24、9x610x4=1212x移项、合并同类项9x10x+12x=12+6+4,11x=22,系数化成1得x=221.答案解:(y+x)(5x2y)=yx5x+2y=y6x 22.答案解:5x2(2yn+1mx2)3(x2+1)=5x22yn+1+mx23x23=(5+m3)x22yn+13=(2+m)x22yn+13由题意得,2+m=0,n+1=3,解得,m=2,n=223.答案解: 2(4x1)(2x+1)=6 8x22x1=6 6x=9 x=32 24.答案解:3(2x2y2)2(3y22x2)=6x23y26y2+4x2=(6x2+4x2)+(3y26y2)=10x29y225.答案解:3
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
