分享
分享赚钱 收藏 举报 版权申诉 / 8

类型2021-2022高中数学人教版选修2-2作业:1-3-2函数的极值与导数 (三) WORD版含解析.doc

  • 上传人:a****
  • 文档编号:462216
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:8
  • 大小:67.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021-2022高中数学人教版选修2-2作业:1-3-2函数的极值与导数 三 WORD版含解析 2021 2022 高中 学人 选修 作业 函数 极值 导数 WORD 解析
    资源描述:

    1、1.3.2函数的极值与导数基本练习夯基一、选择题1(2015吉林实验中学高二期中)已知函数yf(x)在定义域内可导,则函数yf(x)在某点处的导数值为0是函数yf(x)在这点处取得极值的()A充分不必要条件B必要不充分条件C充要条件D非充分非必要条件答案B解析根据导数的性质可知,若函数yf(x)在这点处取得极值,则f(x)0,即必要性成立;反之不一定成立,如函数f(x)x3在R上是增函数,f(x)3x2,则f(0)0,但在x0处函数不是极值,即充分性不成立故函数yf(x)在某点处的导数值为0是函数yf(x)在这点处取得极值的必要不充分条件,故选B.2函数yx4x3的极值点的个数为()A0B1C

    2、2D3答案B解析yx3x2x2(x1),由y0得x10,x21.当x变化时,y、y的变化情况如下表x(,0)0(0,1)1(1,)y00y无极值极小值故选B.3已知实数a、b、c、d成等比数列,且曲线y3xx3的极大值点坐标为(b,c),则ad等于()A2B1C1 D2答案A解析a、b、c、d成等比数列,adbc,又(b,c)为函数y3xx3的极大值点,c3bb3,且033b2,或ad2.4已知f(x)x3ax2(a6)x1有极大值和极小值,则a的取值范围是()A1a2B3a6Ca6Da2答案C解析f (x)3x22axa6,f(x)有极大值与极小值,f (x)0有两不等实根,4a212(a6

    3、)0,a6.5已知函数f(x)x3px2qx的图象与x轴切于(1,0)点,则f(x)的极大值、极小值分别为()A.,0B0,C,0D0,答案A解析f (x)3x22pxq,由f (1)0,f(1)0得,解得f(x)x32x2x.由f (x)3x24x10得x或x1,易得当x时f(x)取极大值.当x1时f(x)取极小值0.6函数f(x)(ab1),则()Af(a)f(b)Bf(a)f(b)Df(a),f(b)的大小关系不能确定答案C解析f (x)().当x1时,f (x)0,f(x)为减函数,abf(b)二、填空题7(20142015福建安溪一中、养正中学联考)曲线yx(3lnx1)在点(1,1

    4、)处的切线方程为_答案4xy30解析y|x1(3lnx4)|x14,切线方程为y14(x1),即4xy30.8(20142015河北冀州中学期中)若函数f(x)xasinx在R上递增,则实数a的取值范围为_答案1,1解析f (x)1acosx,由条件知f (x)0在R上恒成立,1acosx0,a0时显然成立;a0时,cosx恒成立,1,a1,0a1;a0时,cosx恒成立,1,a1,即1a0,综上知1a1.9设x1与x2是函数f(x)alnxbx2x的两个极值点,则常数a_.答案解析f (x)2bx1,由题意得a.三、解答题10已知f(x)ax3bx2cx(a0)在x1时取得极值,且f(1)1

    5、.(1)试求常数a、b、c的值;(2)试判断x1时函数取得极小值还是极大值,并说明理由解析(1)由f (1)f (1)0,得3a2bc0,3a2bc0.又f(1)1,abc1.a,b0,c.(2)f(x)x3x,f (x)x2(x1)(x1)当x1时,f (x)0;当1x1时,f (x)0,函数f(x)在(,1)和(1,)上是增函数,在(1,1)上为减函数当x1时,函数取得极大值f(1)1;当x1时,函数取得极小值f(1)1.点评若函数f(x)在x0处取得极值,则一定有f (x0)0,因此我们可根据极值得到两个方程,再由f(1)1得到一个方程,解上述方程组成的方程组可求出参数拓展应用提能一、选

    6、择题11(20142015山东省德州市期中)已知函数f(x)ex(sinxcosx),x(0,2013),则函数f(x)的极大值之和为()A.BC.D答案B解析f (x)2exsinx,令f (x)0得sinx0,xk,kZ,当2kx0,f(x)单调递增,当(2k1)x2k时,f (x)0,f(x)单调递减,当x(2k1)时,f(x)取到极大值,x(0,2013),0(2k1)2013,0k0(其中f(x)是函数f(x)的导函数),则下列不等式中成立的有_fff(0)f f0,g(x)在上单调递增,故得gg,g(0)f,f(0)f,ff,错误,正确;正确;又gg,即,f0;当x(2,ln2)时

    7、,f (x)0.故f(x)在(,2),(ln2,)上单调递增,在(2,ln2)上单调递减当x2时,函数f(x)取得极大值,极大值为f(2)4(1e2)16(2015北京文,19)设函数f(x)kln x,k0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,上仅有一个零点分析本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数的零点等基础知识,考查学生分析问题解决问题的能力、转化能力、计算能力第一问,先对f(x)求导,令f(x)0解出x,将函数的定义域分段,列表,分析函数的单调性,求极值;第二问,利用第一问的表求函数的最小值

    8、,如果函数有零点,只需最小值0,从而解出k的取值范围,后面再分情况分析函数有几个零点解析(1)由f(x)kln x,(k0)得,f(x)x.由f(x)0解得x(负值舍去)f(x)与f(x)在区间(0,)上的情况如下:x(0,)(,)f(x)0f(x)所以,f(x)的单调递减区间是(0,),单调递增区间是(,);f(x)在x处取得极小值f().(2)由(1)知,f(x)在区间(0,)上的最小值为f().因为f(x)存在零点,所以0,从而ke.当ke时,f(x)在区间(1,)上单调递减,且f()0,所以x是f(x)在区间(1,上的唯一零点当ke时,f(x)在区间(0,)上单调递减,且f(1)0,f

    9、()0,所以f(x)在区间(1,上仅有一个零点综上可知,若f(x)存在零点,则f(x)在区间( 1,上仅有一个零点. 17(20142015山东省菏泽市期中)已知函数f(x)x2alnx.(1)若a1,求函数f(x)的极值,并指出是极大值还是极小值;(2)若a1,求证:在区间1,)上,函数f(x)的图象在函数g(x)x3的图象的下方解析(1)由于函数f(x)的定义域为(0,),当a1时,f (x)x,令f (x)0得x1或x1(舍去),当x(0,1)时,f (x)0,因此函数f(x)在(1,)上单调递增,则x1是f(x)的极小值点,所以f(x)在x1处取得极小值为f(1).(2)证明:设F(x)f(x)g(x)x2lnxx3,则F(x)x2x2,当x1时,F(x)0,故f(x)在区间1,)上单调递减,又F(1)0,在区间1,)上,F(x)0恒成立,即f(x)g(x)恒成立因此,当a1时,在区间1,)上,函数f(x)的图象在函数g(x)图象的下方

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021-2022高中数学人教版选修2-2作业:1-3-2函数的极值与导数 (三) WORD版含解析.doc
    链接地址:https://www.ketangku.com/wenku/file-462216.html
    相关资源 更多
  • 专题12 词汇考点汇总-2023年江苏中考英语一轮复习(牛津译林版).docx专题12 词汇考点汇总-2023年江苏中考英语一轮复习(牛津译林版).docx
  • 专题12 词汇替换句式应用及高考应用文练习-备战2022年高考英语书面表达应用文满分攻略.docx专题12 词汇替换句式应用及高考应用文练习-备战2022年高考英语书面表达应用文满分攻略.docx
  • 专题12 解放战争 2023年中考历史一轮复习专题训练(湖南专用).docx专题12 解放战争 2023年中考历史一轮复习专题训练(湖南专用).docx
  • 专题12 补全对话-2020-2021学年八年级英语下学期期中专项复习(外研版).docx专题12 补全对话-2020-2021学年八年级英语下学期期中专项复习(外研版).docx
  • 专题12 自测section 23---24-2021高考英语3500考纲词汇自测.docx专题12 自测section 23---24-2021高考英语3500考纲词汇自测.docx
  • 专题12 胡不归求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx专题12 胡不归求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx
  • 专题12 胡不归求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx专题12 胡不归求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx
  • 专题12 综合与实践(教师版).docx专题12 综合与实践(教师版).docx
  • 专题12 综合与实践(学生版).docx专题12 综合与实践(学生版).docx
  • 专题12 简单机械-(3大模块知识清单 5个易混易错 5种方法技巧 典例真题精析)-【口袋书】2024年中考物理一轮复习知识清单(解析版).docx专题12 简单机械-(3大模块知识清单 5个易混易错 5种方法技巧 典例真题精析)-【口袋书】2024年中考物理一轮复习知识清单(解析版).docx
  • 专题12 简单机械-(3大模块知识清单 5个易混易错 5种方法技巧 典例真题精析)-【口袋书】2024年中考物理一轮复习知识清单(原卷版).docx专题12 简单机械-(3大模块知识清单 5个易混易错 5种方法技巧 典例真题精析)-【口袋书】2024年中考物理一轮复习知识清单(原卷版).docx
  • 专题12 空间向量的坐标表示8种常见考法归类(原卷版) .docx专题12 空间向量的坐标表示8种常见考法归类(原卷版) .docx
  • 专题12 祈使句 八年级英语提分方案(人教新目标)【学.docx专题12 祈使句 八年级英语提分方案(人教新目标)【学.docx
  • 专题12 祈使句 2020-2021学年【教育机构专用教材 寒假作业】八年级英语提分方案(外研版)【学科网名师堂】.docx专题12 祈使句 2020-2021学年【教育机构专用教材 寒假作业】八年级英语提分方案(外研版)【学科网名师堂】.docx
  • 专题12 短文首字母填空15篇(解析版).docx专题12 短文首字母填空15篇(解析版).docx
  • 专题12 短文首字母填空15篇(名校最新期中真题)-2021-2022学年七年级英语下学期期中复习查缺补漏冲刺满分(人教版).docx专题12 短文首字母填空15篇(名校最新期中真题)-2021-2022学年七年级英语下学期期中复习查缺补漏冲刺满分(人教版).docx
  • 专题12 短文首字母填空15篇(原卷版).docx专题12 短文首字母填空15篇(原卷版).docx
  • 专题12 盐和化肥(原卷版).docx专题12 盐和化肥(原卷版).docx
  • 专题12 电磁感应-【口袋书】2024年高考物理一轮复习知识清单(全国通用).docx专题12 电磁感应-【口袋书】2024年高考物理一轮复习知识清单(全国通用).docx
  • 专题12 电流 电压 电阻和电路-2021年全国中考物理真题专项汇编(第一期)(解析版).docx专题12 电流 电压 电阻和电路-2021年全国中考物理真题专项汇编(第一期)(解析版).docx
  • 专题12 电功和电功率---四川省2019年、2020年物理中考试题分类汇编(含解析)-试卷中心.docx专题12 电功和电功率---四川省2019年、2020年物理中考试题分类汇编(含解析)-试卷中心.docx
  • 专题12 环形跑道问题(二)-2022-2023学年小升初数学行程问题高频常考易错真题专项汇编(通用版).docx专题12 环形跑道问题(二)-2022-2023学年小升初数学行程问题高频常考易错真题专项汇编(通用版).docx
  • 专题12 物质的量浓度-【题高分】2022-2023学年高一化学同步教学专题讲义(人教版2019必修第一册).docx专题12 物质的量浓度-【题高分】2022-2023学年高一化学同步教学专题讲义(人教版2019必修第一册).docx
  • 专题12 牛津译林版初中英语单元错题集—9AU4.docx专题12 牛津译林版初中英语单元错题集—9AU4.docx
  • 专题12 牛津译林版初中英语单元错题集—8BU4.docx专题12 牛津译林版初中英语单元错题集—8BU4.docx
  • 专题12 概率(学生版).docx专题12 概率(学生版).docx
  • 专题12 概率(3大易错点分析 解题模板 举一反三 易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx专题12 概率(3大易错点分析 解题模板 举一反三 易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
  • 专题12 概率(3大易错点分析 解题模板 举一反三 易错题通关)-备战2024年高考数学考试易错题(新高考专用)(原卷版).docx专题12 概率(3大易错点分析 解题模板 举一反三 易错题通关)-备战2024年高考数学考试易错题(新高考专用)(原卷版).docx
  • 专题12 椭圆、双曲线的焦点弦被焦点分成定比-2021-2022学年高二数学培优辅导(人教A版2019选择性必修第一册).docx专题12 椭圆、双曲线的焦点弦被焦点分成定比-2021-2022学年高二数学培优辅导(人教A版2019选择性必修第一册).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1