山东省济南市历城区历城第二中学2021届高三数学上学期10月月考试题(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 济南市 城区 第二 中学 2021 届高三 数学 上学 10 月月 考试题 解析
- 资源描述:
-
1、山东省济南市历城区历城第二中学2021届高三数学上学期10月月考试题(含解析)一、单选题(每小题5分,共40分)1. 已知集合,则的子集共有( )A. 个B. 个C. 个D. 个【答案】B【解析】【分析】先由已知条件求出集合,再求的子集即可知子集个数.【详解】因为或且,所以所以的子集共有个.【点睛】本题主要考查了集合的交集运算以及集合子集的个数,涉及求函数的定义域,属于基础题.2. 已知为虚数单位,复数满足,则在复平面内对应的点所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】由复数的几何意义可得,复数在复平面内对应的点在以(2,3)为圆心,1
2、为半径的圆上,根据图像即可得答案.【详解】设复数,则,所以,即,则复数在复平面内对应的点在以(2,3)为圆心,1为半径的圆上, 所以在复平面内对应的点在第一象限. 故选A.【点睛】本题考查复数的几何意义,需熟练掌握复数的加减及求模运算法则,属基础题.3. 已知向量,若,则( )A. B. C. D. 【答案】B【解析】【分析】先根据已知条件计算,再根据向量数量积的坐标运算求解即可得答案.【详解】解:根据题意得:,所以,解得.故选:B.【点睛】本题考查向量的减法坐标运算,数量积的坐标运算,考查运算能力,是基础题.4. 已知函数对任意,都有,且,则( )A. B. C. D. 【答案】D【解析】【
3、分析】根据题意,由赋值法,先求出;,;记,得到数列是以为首项,以为公比的等比数列,求出通项,再由等比数列的求和公式,即可得出结果.【详解】因为函数对任意,都有,且,令,则,所以;令,则,所以,;记,则,即数列是以为首项,以为公比的等比数列,所以,;所以.故选:D.【点睛】本题主要考查求等比数列的前项和,涉及赋值法求函数值,属于跨章节综合题.5. 设为第二象限角,若,则( )A. B. C. D. 【答案】A【解析】【分析】将展开可得的值,再由同角三角函数基本关系结合为第二象限角,可的值,即可得答案.【详解】,即可得:,解得:由可得:所以.故选:A【点睛】本题主要考查了两角和的正切公式,以及同角
4、三角函数基本关系,属于基础题6. 已知函数,若正实数满足,则的最小值为( )A. B. C. D. 【答案】C【解析】【分析】由函数,知是奇函数,又因为正实数,满足,所以,利用基本不等式求得结果【详解】解:由函数,设,知,所以是奇函数,则,又因为正实数,满足,所以,当且仅当,时取到等号故选:C【点睛】本题考查了函数的奇偶性,基本不等式应用,属于简单题7. 已知函数,若恰有个零点,则实数的取值范围是( )A. B. C. D. 【答案】D【解析】【分析】恰有个零点,即函数的 图像与的图像有三个交点,先求出与函数相切时的值,然后数形结合得出答案.【详解】由恰有个零点,即方程恰有个实数根.即函数的
5、图像与的图像有三个交点,如图.与函数的 图像恒有一个交点,即函数与有两个交点.设与函数相切于点,由所以,得,所以切点为,此时,切线方程为将向下平移可得与恒有两个交点,所以故选:D【点睛】本题考查根据函数零点个数求参数范围,考查数形结合的思想应用,属于中档题.8. “干支纪年法”是我国历法的一种传统纪年法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.地支又与十二生肖“鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪”依次对应,“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为
6、甲子、乙丑、丙寅癸酉;甲戌、乙亥、丙子癸未;甲申、乙酉、丙戌癸巳;,共得到60个组合,称六十甲子,周而复始,无穷无尽.2020年是“干支纪年法”中的庚子年,那么2086年出生的孩子属相为( )A. 猴B. 马C. 羊D. 鸡【答案】B【解析】【分析】根据六十甲子,周而复始,无穷无尽,即周期是60,则2086年与2026年一样,再根据2020年是“干支纪年法”中的庚子年推理结果.【详解】六十甲子,周而复始,无穷无尽,即周期是60,2086年与2026年一样,2020年是庚子年,2021年是辛丑年,2022年是壬寅年,2023年是癸卯年,2024年是甲辰年,2025年是乙巳年,2026年是丙午年,
7、午对应属相为马则2086年出生的孩子属相为马.故选:B【点睛】本题主要考查合情推理与演绎推理,还考查了逻辑推理的能力,属于基础题.二、多项选择题(每小题5分,共20分)9. 下列命题正确的是( )A. 若角(),则B. 任意的向量,若,则C. 已知数列的前项和(为常数),则为等差数列的充要条件是D. 函数的定义域为,若对任意,都有,则函数的图像关于直线对称【答案】BC【解析】【分析】对于A选项:当时,当时,代入可判断A;对于B选项:设的夹角为,则,由向量的数量积的定义可判断B;对于C:验证必要性和充分性两个方面,可判断C;对于D选项:取函数,满足,求得函数的对称轴,可判断D.【详解】对于A选项
8、:当时,当时,不满足,故A不正确;对于B选项:设的夹角为,则,所以,所以或,所以,故B正确;对于C:验证必要性:当n=1时,;当n2时,;由于,所以当n2时,是公差为2a等差数列.要使是等差数列,则,解得c= 0.即an 是等差数列的必要条件是:c= 0.验证充分性:当c=0时,.当n=1时,;当n2时,显然当n=1时也满足上式,所以,进而可得,所以等差数列.所以为等差数列的充要条件是成立,故C正确;对于D选项:设函数,满足其定义域为,且对任意,都有,满足,而,则函数的图像关于直线对称,故D不正确,故选:BC.【点睛】本题综合考查正弦函数与余弦函数的性质,向量的数量积的定义,等差数列的定义,抽
9、象函数的对称性,属于中档题.10. (多选题)函数(,)的部分图象如图所示,则下列结论正确的是( )A. B. 若把函数的图像向左平移个单位,则所得函数是奇函数C. 若把的横坐标缩短为原来的倍,纵坐标不变,得到的函数在上是增函数D. ,若恒成立,则的最小值为【答案】ABD【解析】【分析】根据函数图像可得,进而求出,再利用最值与特殊值可求出解析式,即可判断A;利用图像的平移伸缩变换可判断B;通过函数的平移伸缩变换求出变换后的解析式,根据正弦函数的单调区间整体代入即可判断C;不等式化为,利用三角函数的性质求出即可判断D.【详解】如图所示:,所以,即,(),(),故A正确;把的图像向左平移个单位,则
10、所得函数,是奇函数,故B正确;把的横坐标缩短为原来的倍,纵坐标不变,得到的函数,在上不单调递增,故C错误;由可得,恒成立,令,则, ,的最小值为,故D正确. 故选:ABD.【点睛】本题考查了由三角函数的图像求解析式、三角函数的平移伸缩变换、三角函数的性质,考查了基本知识的掌握情况,属于基础题.11. 若,为正实数,则的充要条件为( )A. B. C. D. 【答案】BD【解析】【分析】根据充要条件的定义,寻求所给不等式的等价条件,满足与等价的即可.【详解】因为,故A选项错误;因为,为正实数,所以,故B选项正确;取,则,即不成立,故C选项错误;因为,当时,所以在上单调递增,即,故D正确.故选:B
11、D【点睛】本题主要考查了充要条件,不等式的性质,函数的单调性,属于中档题.12. (多选题)已知函数,函数,下列选项正确的是( )A. 点是函数的零点B. ,使C. 函数的值域为D. 若关于的方程有两个不相等的实数根,则实数的取值范围是【答案】BC【解析】【分析】根据零点的定义可判断A;利用导数判断出函数在、上的单调性性,求出各段上的值域即可判断B;利用导数求出函数的最值即可判断C;利用导数求出函数的最值即可判断D.【详解】对于选项A,0是函数的零点,零点不是一个点,所以A错误.对于选项B,当时,可得,当时,单调递减;当时,单调递增;所以,当时, ,当时, 当时,单调递减;当时,单调递增; 图
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-488717.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
