分享
分享赚钱 收藏 举报 版权申诉 / 5

类型2022届高考数学一轮复习 第2章 函数概念与基本初等函数Ⅰ第2讲 函数的基本性质作业试题1(含解析)新人教版.docx

  • 上传人:a****
  • 文档编号:509891
  • 上传时间:2025-12-09
  • 格式:DOCX
  • 页数:5
  • 大小:30.73KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022届高考数学一轮复习 第2章 函数概念与基本初等函数第2讲 函数的基本性质作业试题1含解析新人教版 2022 高考 数学 一轮 复习 函数 概念 基本 初等 性质 作业 试题 解析 新人
    资源描述:

    1、第二章函数概念与基本初等函数第二讲函数的基本性质练好题考点自测1.下列说法中正确的个数是()(1)若函数y=f(x)在1,+)上是增函数,则函数的单调递增区间是1,+).(2)对于函数f(x),xD,若对任意x1,x2D(x1x2),有(x1-x2)f(x1)-f(x2)0,则函数f(x)在区间D上是增函数.(3)若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称.(4)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.(5)已知函数y=f(x)是定义在R上的偶函数,若f(x)在(-,0)上是减函数,则f(x)在(0,+)上是增函数.(6

    2、)若T为函数y=f(x)的一个周期,那么nT(nZ)也是函数f(x)的周期.A.3B.4C.5D.62.2019全国卷,5分设f(x)为奇函数,且当x0时,f(x)=ex-1,则当x0时,f(x)=()A.e-x-1B.e-x+1C.-e-x-1D.-e-x+13.2020山东,5分若定义在R的奇函数f(x)在(-,0)上单调递减,且f(2)=0,则满足xf(x-1)0的x的取值范围是()A.-1,13,+)B.-3,-10,1C.-1,01,+)D.-1,01,34.2021大同市调研测试已知函数f(x)=ax3+bsin x+cln(x+x2+1)+3的最大值为5,则f(x)的最小值为()

    3、A.-5B.1C.2D.35.多选题下列函数中,既是偶函数,又在(0,+)上单调递增的是()A.y=ln(1+9x2-3x)B.y=ex+e-xC.y=x2+1D.y=cos x+36.多选题已知f(x)是定义在R上的偶函数,其图象关于点(1,0)对称.以下关于f(x)的结论,正确的为()A.f(x)是周期函数B.f(x)满足f(x)=f(4-x)C.f(x)在(0,2)上单调递减D.f(x)=cosx2是满足条件的一个函数7.2018江苏,5分函数f(x)满足f(x+4)=f(x)(xR),且在区间(-2,2上,f(x)=cosx2,0x2,|x+12|,-21是R上的增函数,则a的取值范围

    4、为.(2)2016天津,5分已知f(x)是定义在R上的偶函数,且在区间(-,0)上单调递增.若实数a满足f(2|a-1|)f(-2),则a的取值范围是.2.(1)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设xR,用x表示不超过x的最大整数,则y=x称为高斯函数.例如:-2.1=-3,3.1=3.已知函数f(x)=2x+31+2x+1,则函数y=f(x)的值域为()A.(12,3)B.(0,2C.0,1,2D.0,1,2,3(2)已知函数f(x)=sinx22x-1+2-x+1(x0),则函数f(x)的最大值是.3.新课标全国,5分设函数f

    5、(x),g(x)的定义域都为R,且 f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A. f(x)g(x)是偶函数B. f(x)|g(x)|是奇函数C.|f(x)|g(x)是奇函数D.|f(x)g(x)|是奇函数4.2021陕西模拟若函数f(x),g(x)分别是定义在R上的偶函数、奇函数,且满足f(x)+2g(x)=ex,则()A.f(-2)f(-3)g(-1)B.g(-1)f(-3)f(-2)C.f(-2)g(-1)f(-3)D.g(-1)f(-2)f(-3)5.2021贵阳市摸底测试已知函数f(x)的定义域为R.当x12时,f(x+12)=f(x-12).则f(8)=()A.-

    6、2 B.-1C.0 D.26.(1)2021山东新高考模拟已知函数f(x)=ex-e-xex+e-x,实数m,n满足不等式f(2m-n)+f(2-n)0,则下列不等关系成立的是()A.m+n1B.m+n-1D.m-n-1(2)2020广西师大附中4月模拟已知定义在R上的奇函数f(x)满足f(1+x)=-f(x),当x(-1,1)时,f(x)=-x2+2x,0x1,ax2+bx,-1x0x1x2,f(x1)f(x2)或x1x2,f(x1)f(x2),所以f(x)在区间D上是增函数,故(2)正确;对于(3),若函数y=f(x+a)是偶函数,则f(-x+a)=f(x+a),则函数y=f(x)的图象关

    7、于直线x=a对称,故(3)正确;对于(4),若函数y=f(x+b)是奇函数,则f(-x+b)=-f(x+b),则函数y=f(x)的图象关于点(b,0)中心对称,故(4)正确;对于(5),根据偶函数的性质可知,偶函数在关于原点对称的区间上的单调性相反,故(5)正确;对于(6),当n=0时,nT=0,此时nT不是函数f(x)的周期,故(6)错误.故(2)(3)(4)(5)正确,故选B.2.D解法一依题意得,当x0时,令f(x-1)0,得0x-12,1x3;当x0时,令f(x-1)0,得-2x-10,-1x1,又x0,-1x0;当x=0时,显然符合题意.综上,原不等式的解集为-1,01,3,选D.解

    8、法二当x=3时,f(3-1)=0,符合题意,排除B;当x=4时,f(4-1)=f(3)0时,g(x)0,故g(x)=ex+e-x在(0,+)上单调递增,故B符合题意;对于C,易知y=x2+1是偶函数,且在(0,+)上单调递增,故C符合题意;对于D,易知y=cos x+3在(0,+)上不单调,故D不符合题意.故选BC.6.ABD因为f(x)为偶函数,所以f(-x)=f(x),又其图象关于点(1,0)对称,所以 f(-x)=-f(2+x),则f(x+2)=-f(x),由此可得f(x+4)=-f(x+2)=f(x),即f(x)是以4为周期的周期函数,所以A正确;f(-x)=f(x)=f(x+4),则

    9、f(x)=f(4-x),所以B正确;f(x)=cosx2是定义在R上的偶函数,且(1,0)是它的图象的一个对称中心,所以D正确;不妨令f(x)=-cosx2,此时f(x)满足题意,且f(x)在(0,2)上单调递增,所以C错误.故选ABD.7.22因为函数f(x)满足f(x+4)=f(x)(xR),所以4为函数f(x)的周期.因为在区间(-2,2上,f(x)=cosx2,0x2,|x+12|,-2x0, 所以f(f(15)=f(f(-1)=f(12)=cos4=22.1.(1)-3a-2由题意,得-a21,af(-2),且f(-2)=f(2),所以-22|a-1|2,则|a-1|12,所以12a

    10、0,所以011+2x+11,所以1212+52(1+2x+1)3,即12f(x)0,f(-3)=e-3+e320,g(-1)=e-1-e40,所以g(-1)f(-2)12时,f(x+12)=f(x-12),所以当x12时,f(x)的周期为1,所以f(8)=f(71+1)=f(1).因为当-1x1时,f(-x)=-f(x),所以f(1)=-f(-1)=-(-1)3-1=2,所以f(8)=2,故选D.6.(1)C因为f(-x)=e-x-exe-x+ex=-ex-e-xe-x+ex=-f(x),所以f(x)为奇函数,又f(x)=ex-e-xex+e-x=1-2e2x+1,所以f(x)为增函数.则f(2m-n)+f(2-n)0f(2m-n)f(n-2)2m-nn-2,即m-n-1.(2)34当0x1时,-1-x0,f(x)=-x2+2x,f(-x)=a(-x)2+b(-x)=ax2-bx,由f(-x)=-f(x),得ax2-bx=-(-x2+2x),求得a=1,b=2.又函数f(x)满足f(1+x)=-f(x),则f(x+2)=-f(x+1)=f(x),即函数f(x)是周期为2的周期函数.所以f(logba)+f(a)+f(2021b)=f(log21)+f(1)+f(20212)=f(0)+f(1)+f(1 010+12)=f(0)+-f(0)+f(12)=f(12)=34.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022届高考数学一轮复习 第2章 函数概念与基本初等函数Ⅰ第2讲 函数的基本性质作业试题1(含解析)新人教版.docx
    链接地址:https://www.ketangku.com/wenku/file-509891.html
    相关资源 更多
  • 浙江省2012届高三高考模拟仿真冲刺(二)数学理试卷 PDF版含答案.pdf浙江省2012届高三高考模拟仿真冲刺(二)数学理试卷 PDF版含答案.pdf
  • 小学数学思维培养掌中宝·2级.pdf小学数学思维培养掌中宝·2级.pdf
  • 海沧区2023-2024学年第一学期八年级数学试题.pdf海沧区2023-2024学年第一学期八年级数学试题.pdf
  • 湖南长沙市芙蓉区2022年下学期二年级期末质量检测卷数学试卷.pdf湖南长沙市芙蓉区2022年下学期二年级期末质量检测卷数学试卷.pdf
  • 湖南长沙市芙蓉区2022年下学期一年级期末质量检测卷数学试卷.pdf湖南长沙市芙蓉区2022年下学期一年级期末质量检测卷数学试卷.pdf
  • 湖南长沙市芙蓉区2018年下学期四年级期末质量检测数学试卷【无答案】.pdf湖南长沙市芙蓉区2018年下学期四年级期末质量检测数学试卷【无答案】.pdf
  • 湖南长沙市芙蓉区2018年下学期三年级期末质量检测数学试卷【无答案】.pdf湖南长沙市芙蓉区2018年下学期三年级期末质量检测数学试卷【无答案】.pdf
  • 湖南长沙五年级数学联考试卷.pdf湖南长沙五年级数学联考试卷.pdf
  • 湖南长沙五年级下册数学联考试卷及答案.pdf湖南长沙五年级下册数学联考试卷及答案.pdf
  • 湖南省长郡中学2024届高三数学上学期月考(二)(PDF版附解析).pdf湖南省长郡中学2024届高三数学上学期月考(二)(PDF版附解析).pdf
  • 小学数学1-5年级练习册(合订本).pdf小学数学1-5年级练习册(合订本).pdf
  • 小学数学1-5年级上下10本练习册(合订本).pdf小学数学1-5年级上下10本练习册(合订本).pdf
  • 湖南省长沙市长郡中学2023-2024学年高三上学期月考(五)数学试卷.pdf湖南省长沙市长郡中学2023-2024学年高三上学期月考(五)数学试卷.pdf
  • 湖南省长沙市中学2023-2024学年高一上学期入学考试数学试卷.pdf湖南省长沙市中学2023-2024学年高一上学期入学考试数学试卷.pdf
  • 湖南省长沙市中学2022-2023学年高二下学期数学竞赛试题(解析版).pdf湖南省长沙市中学2022-2023学年高二下学期数学竞赛试题(解析版).pdf
  • 湖南省长沙市中学2022-2023学年高二下学期数学竞赛试题(原卷版).pdf湖南省长沙市中学2022-2023学年高二下学期数学竞赛试题(原卷版).pdf
  • 海南省2020年中考数学试题【附答案】.pdf海南省2020年中考数学试题【附答案】.pdf
  • 海南省2019年中考数学试题【附答案】.pdf海南省2019年中考数学试题【附答案】.pdf
  • 海南省2018年中考数学试卷【附答案】.pdf海南省2018年中考数学试卷【附答案】.pdf
  • 湖南省邵阳市中学2022-2023学年高一下学期期末考试数学试题.pdf湖南省邵阳市中学2022-2023学年高一下学期期末考试数学试题.pdf
  • 河北省部分学校2022-2023学年高三数学上学期11月联考试卷(PDF版附解析).pdf河北省部分学校2022-2023学年高三数学上学期11月联考试卷(PDF版附解析).pdf
  • 小学四年级2021秋一遍过-数学-RJ-4上(全)(答案回填)-31719.pdf小学四年级2021秋一遍过-数学-RJ-4上(全)(答案回填)-31719.pdf
  • 河北省邯郸市七年级下学期期中数学试题【附答案】.pdf河北省邯郸市七年级下学期期中数学试题【附答案】.pdf
  • 河北省邯郸市2022届高三上学期开学摸底考试数学试题全解全析.pdf河北省邯郸市2022届高三上学期开学摸底考试数学试题全解全析.pdf
  • 河北省邢台市襄都区等五地2022-2023学年高二数学上学期12月联考试卷(PDF版附答案).pdf河北省邢台市襄都区等五地2022-2023学年高二数学上学期12月联考试卷(PDF版附答案).pdf
  • 河北省邢台市四校质检联盟2023-2024学年高三数学上学期期中考试试题(PDF版附答案).pdf河北省邢台市四校质检联盟2023-2024学年高三数学上学期期中考试试题(PDF版附答案).pdf
  • 河北省邢台市六校联考2022-2023学年高二数学上学期期中考试试卷(PDF版有答案).pdf河北省邢台市六校联考2022-2023学年高二数学上学期期中考试试卷(PDF版有答案).pdf
  • 河北省邢台2023-2024高三数学上学期第四次联合月考试题(pdf).pdf河北省邢台2023-2024高三数学上学期第四次联合月考试题(pdf).pdf
  • 河北省衡水中学2022届高三数学上学期第一次调研(8月)试题(PDF版附答案).pdf河北省衡水中学2022届高三数学上学期第一次调研(8月)试题(PDF版附答案).pdf
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1