分享
分享赚钱 收藏 举报 版权申诉 / 18

类型2020版高考数学新增分大一轮浙江专用版讲义:第九章 平面解析几何高考专题突破六 第2课时 WORD版含解析.docx

  • 上传人:a****
  • 文档编号:593095
  • 上传时间:2025-12-11
  • 格式:DOCX
  • 页数:18
  • 大小:194.43KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020版高考数学新增分大一轮浙江专用版讲义:第九章 平面解析几何高考专题突破六 第2课时 WORD版含解析 202
    资源描述:

    1、第2课时定点与定值问题题型一定点问题例1(2018湖州模拟)已知椭圆y21(a0)的上顶点为B(0,1),左、右焦点分别为F1,F2,BF2的延长线交椭圆于点M,4.(1)求椭圆的标准方程;(2)若直线l交椭圆于P,Q两点,且kBPkBQm(m为非零常数),求证:直线l过定点.(1)解方法一设M(x0,y0),F2(c,0),则由4,得即代入椭圆方程得1,又a2c21,所以a22,所以椭圆的标准方程为y21.方法二如图,连接BF1,MF1,设|BF1|BF2|3n,则|F2M|n,又|MF1|MF2|BF1|BF2|6n,所以|MF1|5n,由|BF1|BM|MF1|345,得F1BM90,则

    2、OBF245,a22b22,所以椭圆的标准方程为y21.(2)证明设P(x1,y1),Q(x2,y2),当直线l的斜率不存在时,x1x20,y1y2,所以kBPkBQm,x1,即直线l:x.当直线l的斜率存在时,设直线l:ykxt,把ykxt代入椭圆的方程并整理得(12k2)x24ktx2t220,16k2t24(12k2)(2t22)8(2k21t2)0,所以kBPkBQm,整理得2km(t1),t1,所以直线l的方程为ykx1k1,过定点.综上,直线l过定点.思维升华 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系

    3、,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.跟踪训练1(2018浙江重点中学调研)已知椭圆1(ab0)的左、右焦点分别为F1,F2,|F1F2|2,点P在椭圆上,tanPF2F12且PF1F2的面积为4.(1)求椭圆的标准方程;(2)若点M是椭圆上任意一点,A1,A2分别是椭圆的左、右顶点,直线MA1,MA2分别与直线x交于E,F两点,试证:以EF为直径的圆交x轴于定点,并求该定点的坐标.解(1)由tanPF2F12,得sinPF2F1,cosPF2F1.由题意得解得所以2a|PF1|PF2|426,a3,结合2c2,c,得b24,故椭圆的标准方

    4、程为1.(2)由(1)得A1(3,0),A2(3,0),设M(x0,y0),则直线MA1的方程为y(x3),与直线x的交点为E,直线MA2的方程为y(x3),与直线x的交点为F.设以EF为直径的圆交x轴于点Q(m,0),则QEQF,从而kQEkQF1,即1,即2,又1,得m1,故以EF为直径的圆交x轴于定点,该定点的坐标为,.题型二定值问题例2(2018北京)已知抛物线C:y22px经过点P(1,2),过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(1)求直线l的斜率的取值范围;(2)设O为原点,求证:为定值.(1)解因为抛物线y22px过

    5、点(1,2),所以2p4,即p2.故抛物线C的方程为y24x.由题意知,直线l的斜率存在且不为0.设直线l的方程为ykx1(k0),由得k2x2(2k4)x10.依题意知(2k4)24k210,解得k0或0kb0)上一点,F1,F2分别为C的左、右焦点,且|F1F2|4,F1MF260,F1MF2的面积为.(1)求椭圆C的方程;(2)设N(0,2),过点P(1,2)作直线l,交椭圆C于异于N的A,B两点,直线NA,NB的斜率分别为k1,k2,证明:k1k2为定值.(1)解在F1MF2中,由|MF1|MF2|sin 60,得|MF1|MF2|.由余弦定理,得|F1F2|2|MF1|2|MF2|2

    6、2|MF1|MF2|cos 60(|MF1|MF2|)22|MF1|MF2|(1cos 60),解得|MF1|MF2|4.从而2a|MF1|MF2|4,即a2.由|F1F2|4,得c2,从而b2,故椭圆C的方程为1.(2)证明当直线l的斜率存在时,设斜率为k,显然k0,则其方程为y2k(x1),由得(12k2)x24k(k2)x2k28k0.56k232k0,设A(x1,y1),B(x2,y2),则x1x2,x1x2.从而k1k22k(k4)4.当直线l的斜率不存在时,可得A,B,得k1k24.综上,k1k2为定值.直线与圆锥曲线的综合问题数学运算是指在明晰运算对象的基础上,依据运算法则解决数

    7、学问题的过程.主要包括:理解运算对象,掌握运算法则,探究运算方向,选择运算方法,设计运算程序,求得运算结果等.例椭圆C:1(ab0)的左、右焦点分别是F1,F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k20,证明为定值,并求出这个定值.解(1)由于c2a2b2,将xc代入椭圆方程1,得y.由题

    8、意知1,即a2b2.又e,所以a2,b1.所以椭圆C的方程为y21.(2)设P(x0,y0)(y00),又F1(,0),F2(,0),所以直线PF1,PF2的方程分别为:y0x(x0)yy00,:y0x(x0)yy00.由题意知.由于点P在椭圆上,所以y1.所以.因为m,2x02,可得,所以mx0,因此mb0)的下顶点及左、右焦点F1,F2,过椭圆C的左焦点F1的直线与椭圆C相交于M,N两点,线段MN的中垂线交x轴于点D且垂足为点P.(1)求椭圆C的方程;(2)证明:当直线MN斜率变化时,为定值.(1)解当x0时,由x2(y1)24,得y1或y3;当y0时,由x2(y1)24,得x.又圆x2(

    9、y1)24过椭圆1(ab0)的下顶点及焦点F1,F2,故c,b1,所以a2b2c24,即椭圆C的方程为y21.(2)证明易知直线MN的斜率存在,且不为0,所以设直线MN:yk(x),且M(x1,y1),N(x2,y2),由消去y,得(14k2)x28k2x4(3k21)0,(8k2)244(14k2)(3k21)16(k21)0,故x1x2,x1x2,则MN的中点P,故MN的中垂线DP的方程为k,k0,由y0得D,故|DF1|,|MN|x1x2|,因此,为定值.2.已知抛物线C的顶点在原点,焦点在y轴上,且抛物线上有一点P(m,5)到焦点的距离为6.(1)求该抛物线C的方程;(2)已知抛物线上

    10、一点M(4,t),过点M作抛物线的两条弦MD和ME,且MDME,判断直线DE是否过定点,并说明理由.解(1)由题意设抛物线方程为x22py(p0),其准线方程为y,P(m,5)到焦点的距离等于P到其准线的距离,所以56,即p2.所以抛物线方程为x24y.(2)由(1)可得点M(4,4),设直线MD的方程为yk(x4)4(k0),联立得x24kx16k160,由题意得0,设D(x1,y1),E(x2,y2),则xMx116k16,所以x14k4,y14(k1)2,同理可得x24,y242,所以直线DE的方程为y4(k1)2(x4k4)(x4k4)(x4k4).化简得yx4k(x4)8.所以直线D

    11、E过定点(4,8).3.知抛物线C1的方程为x22py(p0),过点M(a,2p)(a为常数)作抛物线C1的两条切线,切点分别为A,B.(1)过焦点且在x轴上截距为2的直线l与抛物线C1交于Q,N两点,Q,N两点在x轴上的射影分别为Q,N,且|QN|2,求抛物线C1的方程;(2)设直线AM,BM的斜率分别为k1,k2.求证:k1k2为定值.(1)解因为抛物线C1的焦点坐标是,所以过焦点且在x轴上截距为2的直线方程是1,即1.联立消去y并整理,得x2xp20,显然0恒成立,设点Q(xQ,yQ),N(xN,yN),则xQxN,xQxNp2.则|QN|xQxN|2,解得p2.所以抛物线C1的方程为x

    12、24y.(2)证明设点A(x1,y1),B(x2,y2)(x10,x20),得y,则y.所以切线MA的方程是yy1(xx1),即yx.又点M(a,2p)在直线MA上,于是有2pa,即x2ax14p20.同理,有x2ax24p20,因此,x1,x2是方程x22ax4p20的两根,则x1x22a,x1x24p2.所以k1k24,故k1k2为定值得证.4.已知中心在原点,焦点在x轴上的椭圆C的离心率为,过左焦点F且垂直于x轴的直线交椭圆C于P,Q两点,且|PQ|2.(1)求C的方程;(2)若直线l是圆x2y28上的点(2,2)处的切线,点M是直线l上任一点,过点M作椭圆C的切线MA,MB,切点分别为

    13、A,B,设切线的斜率都存在.求证:直线AB过定点,并求出该定点的坐标.解(1)由已知,设椭圆C的方程为1(ab0),因为|PQ|2,不妨设点P(c,),代入椭圆方程得1,又因为e,所以1,bc,所以b24,a22b28,所以C的方程为1.(2)依题设,得直线l的方程为y2(x2),即xy40,设M(x0,y0),A(x1,y1),B(x2,y2),x0x1且x0x2,由切线MA的斜率存在,设其方程为yy1k(xx1),联立得(2k21)x24k(y1kx1)x2(y1kx1)280,由相切得16k2(y1kx1)28(2k21)(y1kx1)240,化简得(y1kx1)28k24,即(x8)k

    14、22x1y1ky40,因为方程只有一解,所以k,所以切线MA的方程为yy1(xx1),即x1x2y1y8,同理,切线MB的方程为x2x2y2y8,又因为两切线都经过点M(x0,y0),所以所以直线AB的方程为x0x2y0y8,又x0y04,所以直线AB的方程可化为x0x2(4x0)y8,即x0(x2y)8y80,令得所以直线AB恒过定点(2,1).5.设椭圆C:1(ab0)的离心率e,左顶点M到直线1的距离d,O为坐标原点.(1)求椭圆C的方程;(2)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值.(1)解由e,得ca,又b2a2c2,所以b

    15、a,即a2b.由左顶点M(a,0)到直线1,即到直线bxayab0的距离d,得,即,把a2b代入上式,得,解得b1.所以a2b2,c.所以椭圆C的方程为y21.(2)证明设A(x1,y1),B(x2,y2),当直线AB的斜率不存在时,由椭圆的对称性,可知x1x2,y1y2.因为以AB为直径的圆经过坐标原点,故0,即x1x2y1y20,也就是xy0,又点A在椭圆C上,所以y1,解得|x1|y1|.此时点O到直线AB的距离d1|x1|.当直线AB的斜率存在时,设直线AB的方程为ykxm,与椭圆方程联立有消去y,得(14k2)x28kmx4m240,所以x1x2,x1x2.因为以AB为直径的圆过坐标

    16、原点O,所以OAOB,所以x1x2y1y20,所以(1k2)x1x2km(x1x2)m20,所以(1k2)m20,整理得5m24(k21),所以点O到直线AB的距离d1.综上所述,点O到直线AB的距离为定值.6.(2018丽水、衢州、湖州三地市质检)如图,F1,F2是椭圆C:y21的左、右焦点,A,B是椭圆C上的两点,且都在x轴上方,AF1BF2,设AF2,BF1的交点为M.(1)求证:为定值;(2)求动点M的轨迹方程.(1)证明方法一如题图所示,由题意知F1(1,0),F2(1,0),设直线AF1的方程为xmy1,与椭圆C的方程联立,由消去x,整理得(m22)y22my10.由题意知,0,因

    17、为点A在x轴上方,设A(xA,yA),所以yA0,yA,所以|AF1|yA0|.直线BF2的方程为xmy1,设B(xB,yB),同理可得yB,|BF2|yB0|,所以,所以2.所以为定值.方法二如图所示,延长AF1交椭圆于B1,由椭圆的对称性可知|B1F1|BF2|,所以要证为定值,只需证为定值.设直线AF1的方程为xmy1,A(x1,y1),B1(x2,y2),y10,y20,所以y1y2,y1y2.所以2.所以为定值.(2)解方法一设直线AF2,BF1的方程分别为xk1y1,xk2y1,联立,得解得所以点M的坐标为.又由(1)方法一可得k1m,k2m,所以k1k2mm2m222(m2m)6m,k2k124.所以所以动点M的轨迹方程为1(y0).方法二如图所示,设|AF1|d1,|BF2|d2,因为AF1BF2,所以,所以,即|MF1|BF1|.又|BF1|BF2|2,所以|BF1|2|BF2|2d2,所以|MF1|BF1|.同理可得|MF2|,所以|MF1|MF2|2,由(1)可知,所以|MF1|MF2|F1F2|2,动点M的轨迹为以F1,F2为左、右焦点,以为长轴长的椭圆的一半,所以动点M的轨迹方程为1(y0).

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020版高考数学新增分大一轮浙江专用版讲义:第九章 平面解析几何高考专题突破六 第2课时 WORD版含解析.docx
    链接地址:https://www.ketangku.com/wenku/file-593095.html
    相关资源 更多
  • 九年级历史下册第五单元“冷战”后的世界专题四世界政治格局的演变练习北师大版.docx九年级历史下册第五单元“冷战”后的世界专题四世界政治格局的演变练习北师大版.docx
  • 九年级历史下册第五单元“冷战”后的世界专题五现代科技文化与经济全球化练习北师大版.docx九年级历史下册第五单元“冷战”后的世界专题五现代科技文化与经济全球化练习北师大版.docx
  • 九年级历史下册第五单元“冷战”后的世界专题三社会主义国家的建立和发展练习北师大版.docx九年级历史下册第五单元“冷战”后的世界专题三社会主义国家的建立和发展练习北师大版.docx
  • 九年级历史下册第二单元第二次工业革命和近代科学文化第6课工业化国家的社会变化英国工业革命时期的城市病素材新人教版20191205336.docx九年级历史下册第二单元第二次工业革命和近代科学文化第6课工业化国家的社会变化英国工业革命时期的城市病素材新人教版20191205336.docx
  • 九年级历史下册第二单元第二次工业革命和近代科学文化第5课第二次工业革命诺贝尔奖相关介绍素材新人教版20191205339.docx九年级历史下册第二单元第二次工业革命和近代科学文化第5课第二次工业革命诺贝尔奖相关介绍素材新人教版20191205339.docx
  • 九年级历史下册第二单元第二次工业革命和近代科学文化第5课第二次工业革命海厄特素材新人教版20191205340.docx九年级历史下册第二单元第二次工业革命和近代科学文化第5课第二次工业革命海厄特素材新人教版20191205340.docx
  • 九年级历史下册第二单元动荡与变革的时代第6课经济大危机与罗斯福新政练习北师大版.docx九年级历史下册第二单元动荡与变革的时代第6课经济大危机与罗斯福新政练习北师大版.docx
  • 九年级历史下册第二单元动荡与变革的时代第5课尤和土耳其的民族解放运动练习北师大版.docx九年级历史下册第二单元动荡与变革的时代第5课尤和土耳其的民族解放运动练习北师大版.docx
  • 九年级历史下册第二单元动荡与变革的时代直击中考练习北师大版.docx九年级历史下册第二单元动荡与变革的时代直击中考练习北师大版.docx
  • 九年级历史下册第二单元动荡与变革的时代单元提升练习北师大版.docx九年级历史下册第二单元动荡与变革的时代单元提升练习北师大版.docx
  • 九年级历史下册第三单元第二次世界大战第9课世界反法西斯战争的胜利练习北师大版.docx九年级历史下册第三单元第二次世界大战第9课世界反法西斯战争的胜利练习北师大版.docx
  • 九年级历史下册第三单元第二次世界大战第8课第二次世界大战的全面爆发与扩大练习北师大版.docx九年级历史下册第三单元第二次世界大战第8课第二次世界大战的全面爆发与扩大练习北师大版.docx
  • 九年级历史下册第三单元第二次世界大战直击中考练习北师大版.docx九年级历史下册第三单元第二次世界大战直击中考练习北师大版.docx
  • 九年级历史下册第三单元第二次世界大战专题一两次世界大战练习北师大版.docx九年级历史下册第三单元第二次世界大战专题一两次世界大战练习北师大版.docx
  • 九年级历史下册第一单元第一次世界大战第3课凡尔赛_华盛顿体系的建立练习北师大版.docx九年级历史下册第一单元第一次世界大战第3课凡尔赛_华盛顿体系的建立练习北师大版.docx
  • 九年级历史下册第一单元第一次世界大战第1课两大军事集团的争斗练习北师大版.docx九年级历史下册第一单元第一次世界大战第1课两大军事集团的争斗练习北师大版.docx
  • 九年级历史下册第一单元第一次世界大战直击中考练习北师大版.docx九年级历史下册第一单元第一次世界大战直击中考练习北师大版.docx
  • 九年级历史下册第一单元第一次世界大战单元提升练习北师大版.docx九年级历史下册第一单元第一次世界大战单元提升练习北师大版.docx
  • 九年级历史下册 第一单元《殖民地人民的反抗与资本主义制度的扩展》检测题 新人教版.docx九年级历史下册 第一单元《殖民地人民的反抗与资本主义制度的扩展》检测题 新人教版.docx
  • 九年级历史上学期期中测试卷(1-21课)-【帮课堂】2023-2024学年九年级历史上册同步学与练(部编版).docx九年级历史上学期期中测试卷(1-21课)-【帮课堂】2023-2024学年九年级历史上册同步学与练(部编版).docx
  • 九年级历史上册第三单元近代社会的曙光提升训练题.docx九年级历史上册第三单元近代社会的曙光提升训练题.docx
  • 九年级历史上册 第四单元 封建时代的亚洲国家 第12课 阿拉伯帝国拓展练习 新人教版.docx九年级历史上册 第四单元 封建时代的亚洲国家 第12课 阿拉伯帝国拓展练习 新人教版.docx
  • 九年级历史上册 第四单元 封建时代的亚洲国家 第12课 阿拉伯帝国同步练习 新人教版.docx九年级历史上册 第四单元 封建时代的亚洲国家 第12课 阿拉伯帝国同步练习 新人教版.docx
  • 九年级历史上册 第四单元 封建时代的亚洲国家 第11课 古代日本同步练习 新人教版.docx九年级历史上册 第四单元 封建时代的亚洲国家 第11课 古代日本同步练习 新人教版.docx
  • 九年级历史上册 第六单元 资本主义制度的初步确立 第19课 法国大革命和拿破仑帝国同步练习 新人教版.docx九年级历史上册 第六单元 资本主义制度的初步确立 第19课 法国大革命和拿破仑帝国同步练习 新人教版.docx
  • 九年级历史上册 第六单元 资本主义制度的初步确立 第18课 美国的独立同步练习 新人教版.docx九年级历史上册 第六单元 资本主义制度的初步确立 第18课 美国的独立同步练习 新人教版.docx
  • 九年级历史上册 第六单元 资本主义制度的初步确立 第17课 君主立宪制的英国同步练习 新人教版.docx九年级历史上册 第六单元 资本主义制度的初步确立 第17课 君主立宪制的英国同步练习 新人教版.docx
  • 九年级历史上册 第五单元 走向近代 第15课 探寻新航路同步练习 新人教版.docx九年级历史上册 第五单元 走向近代 第15课 探寻新航路同步练习 新人教版.docx
  • 九年级历史上册 第五单元 走向近代 第14课 文艺复兴运动拓展练习 新人教版.docx九年级历史上册 第五单元 走向近代 第14课 文艺复兴运动拓展练习 新人教版.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1