2021新高考数学二轮总复习学案:7-4-1 直线与圆及圆锥曲线 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021新高考数学二轮总复习学案:7-4-1直线与圆及圆锥曲线 WORD版含解析 2021 新高 数学 二轮 复习 直线 圆锥曲线 WORD 解析
- 资源描述:
-
1、7.4压轴题大题2直线与圆锥曲线7.4.1直线与圆及圆锥曲线必备知识精要梳理1.解答直线与圆锥曲线相交问题的一般步骤:设线、设点,联立、消元,韦达定理、代入、化简.第一步:讨论直线斜率的存在性,斜率存在时,设直线的方程为y=kx+b(或斜率不为零时,设x=my+n);第二步:设直线与圆锥曲线的两个交点为M(x1,y1),N(x2,y2);第三步:联立方程组y=kx+b,f(x,y)=0,消去y得关于x的方程Ax2+Bx+C=0;第四步:由判别式和韦达定理列出直线与曲线相交于两个点满足的条件二次系数A不为零,0,x1+x2=-BA,x1x2=CA;第五步:把所要解决的问题转化为含x1+x2,x1
2、x2的形式,然后代入、化简.2.弦中点问题的特殊解法点差法:即若已知弦AB的中点为M(x0,y0),先设两个交点为A(x1,y1),B(x2,y2);分别代入圆锥曲线的方程,得f(x1,y1)=0,f(x2,y2)=0,两式相减、分解因式,再将x1+x2=2x0,y1+y2=2y0代入其中,即可求出直线的斜率.3.弦长公式:|AB|=1+k2|x1-x2|=(1+k2)(x1+x2)2-4x1x2(k为弦AB所在直线的斜率).关键能力学案突破热点一求轨迹方程【例1】(2020北京顺义二模,21节选)设线段AB的两个端点A,B分别在x轴、y轴上滑动,且|AB|=5,OM=35OA+25OB(O为
3、坐标原点),求点M的轨迹方程.解题心得1.如果动点运动的条件是一些几何量的等量关系,设出动点坐标,直接利用等量关系建立x,y之间的关系F(x,y)=0,就得到轨迹方程.2.若动点的轨迹符合某已知曲线的定义,可直接设出相应的曲线方程,用待定系数法或题中所给几何条件确定相应系数,从而求出轨迹方程.3.如果动点P的运动是由另外某一点Q的运动引发的,而该点坐标满足某已知曲线方程,则可以设出P(x,y),用(x,y)表示出相关点Q的坐标,然后把Q的坐标代入已知曲线方程,即可得到动点P的轨迹方程.【对点训练1】设抛物线C1的方程为x2=4y,点M(x0,y0)(x00)在抛物线C2:x2=-y上,过M作抛
4、物线C1的切线,切点分别为A,B,圆N是以线段AB为直径的圆.(1)若点M的坐标为(2,-4),求此时圆N的半径长;(2)当M在x2=-y上运动时,求圆心N的轨迹方程.热点二直线与圆的综合【例2】(2020陕西榆林高三模拟,理20)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.解题心得直线与圆相交问题的求法(1)弦长的求解方法根据半径、弦心距、半弦长构成的直角三角形,构成三者间的关系R2=d2+l24(其中l为弦长,R为圆的半径,d为圆心到直线的距离);根据公式
5、l=1+k2|x1-x2|求解(其中l为弦长,x1,x2为直线与圆相交所得交点的横坐标,k为直线的斜率);求出交点坐标,用两点间距离公式求解.(2)定点、定值问题的求解步骤设:设出直线方程,并代入圆的方程整理成关于x(或y)的一元二次方程;列:用参数表示出需要证明的直线方程或者几何性质的等式;解:判断直线是否过定点或对表示出的代数式进行化简求解.【对点训练2】已知圆C经过点A(0,2),B(2,0),圆C的圆心在圆x2+y2=2的内部,且直线3x+4y+5=0被圆C所截得的弦长为23.点P为圆C上异于A,B的任意一点,直线PA与x轴交于点M,直线PB与y轴交于点N.(1)求圆C的方程;(2)若
6、直线y=x+1与圆C交于A1,A2两点,求BA1BA2;(3)求证:|AN|BM|为定值.热点三直线与圆锥曲线的综合【例3】(2020江西南康中学第一次联考,21)已知椭圆C:x2a2+y2b2=1(ab0)的右焦点为(3,0),且经过点-1,32,点M是x轴上的一点,过点M的直线l与椭圆C交于A,B两点(点A在x轴的上方).(1)求椭圆C的方程;(2)若AM=2MB,且直线l与圆O:x2+y2=47相切于点N,求|MN|.解题心得本题是直线与椭圆、圆的综合问题,对于(1),由题意,列关于a,b的方程组,解方程组可得a,b的值进而求得椭圆的方程;对于(2),设出点M,A,B的坐标及直线l的方程
7、x=ty+m,与椭圆方程联立,再结合根与系数的关系,得m与t的关系,由直线与圆相切,得另一关系式,联立可得点M的坐标,进而求得|MN|,考查了数学运算这一核心素养.【对点训练3】(2020四川成都高三模拟,理21)已知椭圆E:x2a2+y2b2=1(ab0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.(1)求椭圆E的方程及点T的坐标;(2)设O是坐标原点,直线l平行于OT,与椭圆E交于不同的两点A,B,且与直线l交于点P.证明:存在常数,使得|PT|2=|PA|PB|,并求的值.7.4压轴题大题2直线与圆锥曲线7.4.1直线与圆及圆锥曲线
8、关键能力学案突破【例1】解设M(x,y),A(x0,0),B(0,y0),由OM=35OA+25OB,得(x,y)=35(x0,0)+25(0,y0),则x=35x0,y=25y0,即x0=53x,y0=52y,由|AB|=5,得x02+y02=25,则有53x2+52y2=25,化简,得x29+y24=1.对点训练1解(1)设N(x,y),Ax1,x124,Bx2,x224,x1x2,切线MA,MB的方程分别为y=x12(x-x1)+x124,y=x22(x-x2)+x224,得MA,MB的交点M(x0,y0)的坐标为x0=x1+x22=2,y0=x1x24=-4.又kAB=x224-x12
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-623493.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
