分享
分享赚钱 收藏 举报 版权申诉 / 17

类型2022-2023学年度人教版七年级数学上册第一章 有理数专项攻克练习题(详解).docx

  • 上传人:a****
  • 文档编号:640003
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:17
  • 大小:287.53KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年度人教版七年级数学上册第一章 有理数专项攻克练习题详解 2022 2023 学年 度人 七年 级数 上册 第一章 有理数 专项 攻克 练习题 详解
    资源描述:

    1、人教版七年级数学上册第一章 有理数专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若有理数a,b满足0,则a+b的值为()A1B1C5D52、已知实数在数轴上的对应点位置如图所示,则化简的结果是(

    2、)ABC1D3、计算的结果为()ABCD4、按如图所示的运算程序,能使输出的结果为的是()ABCD5、如果某商场盈利万元,记作万元,那么亏损万元,应记作()AB万元C万元D6、下列说法:若,则;若a,b互为相反数,且,则;若,则;若,则其中正确的个数有()A1个B2个C3个D4个7、实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()ABCD8、实数的倒数是()ABCD9、已知,且,则的值是()ABC或D210、观察算式:313,329,3327,3481,35243,36729,372187,386561,通过观察,用你所发现的规律确定32021的个位数字是()A3B9C7D1第卷(

    3、非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、比较大小:-3_0.(填“ ”)2、小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为,小红快速准确地算出了4筐白菜的总质量为_千克3、a,b是有理数,它们在数轴上的对应点的位置如下图所示,把a,b,按照从小到大的顺序排列为_4、绝对值小于4的所有整数的和为_5、东京与北京的时差为,伯伯在北京乘坐早晨的航班飞行约到达东京,那么李伯伯到达东京的时间是_(注:正数表示同一时刻比北京时间早的时数)三、解答题(5小题,每小题10分,共计50分)1、阅读:因为一个非负数的绝对值等于

    4、它本身,负数的绝对值等于它的相反数,所以当时,当时,根据以上阅读完成:(1)_;(2)计算:2、如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是2已知点A,B是数轴上的点,请参照图并思考,完成下列各题(1) 若点A表示数,将A点向右移动5个单位长度,那么终点B表示的数是 ,此时 A,B两点间的距离是_(2) 若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B,则B表示的数是_;此时 A,B两点间的距离是_(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B,此时A、B两点间的距离

    5、为多少?3、计算:4、计算题(1)(2)(3)(4)(5) (6)5、已知有理数a,b满足ab20,ab0,且|a|2,|b|3,求(b1)2的值-参考答案-一、单选题1、A【解析】【分析】根据绝对值和偶次方的非负性求出a,b的值,即可得到a+b的值【详解】解:, 3-a=0,b+2=0a=3,b=-2a+b=1故选:A【考点】本题考查绝对值和偶次方的非负性,有理数的加法,解题的关键是掌握几个非负数的和为0,则这几个非负数都为02、D【解析】【分析】根据数轴上a点的位置,判断出(a1)和(a2)的符号,再根据非负数的性质进行化简【详解】解:由图知:1a2,a10,a20,原式a1-a1(a2)

    6、2a3故选D【考点】此题主要考查了二次根式的性质与化简,正确得出a10,a20是解题关键3、A【解析】【分析】根据有理数的加减运算法则即可解答【详解】解:,故选:A【考点】本题考查了有理数的加减运算,解题的关键是掌握有理数的运算法则4、C【解析】【分析】由题可知,代入、值前需先判断的正负,再进行运算方式选择,据此逐项进行计算即可得【详解】A选项,故将、代入,输出结果为,不符合题意;B选项,故将、代入,输出结果为,不符合题意;C选项,故将、代入,输出结果为,符合题意;D选项,故将、代入,输出结果为,不符合题意,故选C【考点】本题主要考查程序型代数式求值,解题的关键是根据运算程序,先进行的正负判断

    7、,选择对应运算方式,然后再进行计算5、B【解析】【分析】盈利、亏损表示两个具有相反意义量,把盈利记作“”,则亏损记作“”,进而得出答案【详解】解:盈利、亏损表示两个具有相反意义量,亏损万元,应记作万故选:B【考点】本题主要考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示6、B【解析】【分析】根据有理数的运算法则及绝对值的性质逐一判断可得 【详解】解:若,则或为负数,错误;若,互为相反数,且,则,正确;若,则或,错误;若,所以,则,正确;故选:B【考点】本题主要考查有理数的除法和绝对值,解题的关

    8、键是熟练掌握有理数的运算法则及绝对值的性质7、D【解析】【分析】直接利用a,b在数轴上位置进而分别分析得出答案【详解】解:由数轴上a与1的位置可知:,故选项A错误;因为a0,b0,所以,故选项B错误;因为a0,b0,所以,故选项C错误;因为a0,则,故选项D正确;故选:D【考点】此题主要考查了根据点在数轴的位置判断式子的正误,正确结合数轴分析是解题关键8、C【解析】【分析】先求绝对值,再化为假分数进而求倒数即可【详解】解:,实数的倒数是故选C【考点】本题考查了倒数,绝对值,熟练掌握概念是解题的关键9、C【解析】【分析】根据题意得出的值,然后代入计算即可【详解】解:,或,或,故选:C【考点】本题

    9、考查了绝对值以及有理数加减法的应用,根据题意得出的值是解题的关键10、A【解析】【分析】从运算的结果可以看出尾数以3、9、7、1四个数字一循环,用2019除以4,余数是几就和第几个数字相同,由此解决问题即可【详解】解:已知31=3,末位数字为3,32=9,末位数字为9,33=27,末位数字为7,34=81,末位数字为1,35=243,末位数字为3,36=729,末位数字为9,37=2187,末位数字为7,38=6561,末位数字为1,由此得到:3的1,2,3,4,5,6,7,8,次幂的末位数字以3、9、7、1四个数字为一循环,又20214=5051, 所以32019的末位数字与33的末位数字相

    10、同是3故选:A【考点】此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键二、填空题1、【解析】【详解】分析:根据负数都小于0得出即可详解:-30故答案为点睛:本题考查了有理数的大小比较的应用,能熟记有理数的大小比较法则是解此题的关键,难度不大2、99【解析】【详解】(+()+()+254=-1+100=99.故答案为99.3、【解析】【分析】根据数轴表示数的方法得到,且,则有【详解】解:,且,故答案为:【考点】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小也考查了数轴4、0【解析】【分析】找出绝

    11、对值小于4的所有整数,求和即可【详解】解:绝对值小于4的所有整数有:0,1,2,3,之和为0故答案为:0【考点】此题考查了有理数的加法和绝对值的意义,确定绝对值小于4的所有整数是解本题的关键,熟练掌握互为相反数的两个数为05、时【解析】【分析】根据题意,9点先加上3个小时,再加上时差的1个小时,得到达到东京的时间【详解】由题意得,李伯伯到达东京是下午时故答案是:13时【考点】本题考查有理数加法的实际应用,解题的关键是掌握有理数加法运算法则三、解答题1、(1);(2)【解析】【分析】(1)根据绝对值的意义可直接进行求解;(2)利用绝对值的意义及有理数加减混合运算可直接进行求解【详解】解:(1),

    12、;故答案为;(2)原式【考点】本题主要考查有理数的加减混合运算及绝对值的意义,熟练掌握有理数的加减混合运算及绝对值的意义是解题的关键2、(1) 3 ,5 ;(2) 2 ; 1 ;(3)【解析】【详解】试题分析:(1)由数轴上面的点表示的数查出结果即可,并根据绝对值求出两点间的距离;(2)由数轴上面的点表示的数查出结果即可,并根据绝对值求出两点间的距离;(3)结合(1)和(2)的距离与平移的关系直接列式即可(距离为两次移动的单位长度的差的绝对值).试题解析:(1)(1) 3 ,5 ;(2) 2 ; 1 ;(3)3、-2【解析】【分析】先分别计算出有理数的乘方及括号内的有理数加减,再计算乘除,即可

    13、求得结果【详解】解:【考点】此题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序及相关运算法则是解答此题的关键4、(1)1;(2);(3);(4);(5);(6)1002【解析】【分析】(1)、(2)、(3)、(4)直接根据有理数加减混合运算法则求解即可;(5)先根据绝对值的性质去绝对值符号,然后再结合有理数加减混合运算法则求解即可;(6)先观察得出相邻两项之和为1,从而利用规律求解即可【详解】解:(1)原式;(2)原式;(3)原式;(4)原式;(5)原式;(6)原式=【考点】本题考查有理数的加减混合运算,熟练掌握有理数的相关运算法则,并注意运算规律与顺序是解题关键5、【解析】【分析】先根据题意确定a、b的符号,再根据a、b的绝对值确定a、b的值,然后把a、b的值代入所求式子计算即可【详解】解:由ab20可知a0因为ab0,所以b0又因为,所以a2,b3所以【考点】本题考查了有理数的绝对值、有理数的加法法则和有理数的乘法法则以及有理数的乘方运算等知识,属于基本题型,正确确定a、b的值、熟练进行有理数的运算是解题关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版七年级数学上册第一章 有理数专项攻克练习题(详解).docx
    链接地址:https://www.ketangku.com/wenku/file-640003.html
    相关资源 更多
  • 专题09 应用文写作(9)-研读近十年高考英语满分书面表达聚焦2023高考.docx专题09 应用文写作(9)-研读近十年高考英语满分书面表达聚焦2023高考.docx
  • 专题09 应用文写作12篇(第二期)-2023高考英语名校模拟真题速递(新高考专用).docx专题09 应用文写作12篇(第二期)-2023高考英语名校模拟真题速递(新高考专用).docx
  • 专题09 应用文写作-2022-2023学年高二英语上学期期末专项复习(译林版2020).docx专题09 应用文写作-2022-2023学年高二英语上学期期末专项复习(译林版2020).docx
  • 专题09 平面直角坐标系(解析版).docx专题09 平面直角坐标系(解析版).docx
  • 专题09 平面直角坐标系(原卷版).docx专题09 平面直角坐标系(原卷版).docx
  • 专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(解析版).docx专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(解析版).docx
  • 专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(原卷版).docx专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(原卷版).docx
  • 专题09 平面直角坐标系与函数基础(解析版).docx专题09 平面直角坐标系与函数基础(解析版).docx
  • 专题09 平面直角坐标系与函数基础(考点回归).docx专题09 平面直角坐标系与函数基础(考点回归).docx
  • 专题09 平面直角坐标系与函数基础(原卷版).docx专题09 平面直角坐标系与函数基础(原卷版).docx
  • 专题09 平面直角坐标系与函数基础知识(共30道)(教师版)(02期)-2023年中考数学真题分类训练.docx专题09 平面直角坐标系与函数基础知识(共30道)(教师版)(02期)-2023年中考数学真题分类训练.docx
  • 专题09 平面直角坐标系与函数基础知识(共30道)(学生版)(02期)-2023年中考数学真题分类训练.docx专题09 平面直角坐标系与函数基础知识(共30道)(学生版)(02期)-2023年中考数学真题分类训练.docx
  • 专题09 平面向量及复数、推理证明-【口袋书】2022年高考数学复习思维导图(新高考地区专用).docx专题09 平面向量及复数、推理证明-【口袋书】2022年高考数学复习思维导图(新高考地区专用).docx
  • 专题09 平面向量、不等式及复数(解析版).docx专题09 平面向量、不等式及复数(解析版).docx
  • 专题09 平面向量、不等式及复数(原卷版).docx专题09 平面向量、不等式及复数(原卷版).docx
  • 专题09 平面向量 9.3三角形四心及面积问题 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题09 平面向量 9.3三角形四心及面积问题 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题09 平面向量 9.1线性运算、基本定理和坐标运算 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题09 平面向量 9.1线性运算、基本定理和坐标运算 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题09 幂运算(三大类型)-2022-2023学年七年级数学下册《高分突破•培优新方法》(苏科版).docx专题09 幂运算(三大类型)-2022-2023学年七年级数学下册《高分突破•培优新方法》(苏科版).docx
  • 专题09 导数的概念意义及运算(考点清单)(解析版).docx专题09 导数的概念意义及运算(考点清单)(解析版).docx
  • 专题09 导数的概念意义及运算(考点清单)(原卷版).docx专题09 导数的概念意义及运算(考点清单)(原卷版).docx
  • 专题09 导数大题训练理科(教师版).docx专题09 导数大题训练理科(教师版).docx
  • 专题09 导数压轴题之拉格朗日中值定理详述版(解析版).docx专题09 导数压轴题之拉格朗日中值定理详述版(解析版).docx
  • 专题09 导数压轴题之拉格朗日中值定理详述版(原卷版).docx专题09 导数压轴题之拉格朗日中值定理详述版(原卷版).docx
  • 专题09 家庭生活-备战2022高考英语阅读七选五热点话题 体裁分类训练(高考模拟 名校真题).docx专题09 家庭生活-备战2022高考英语阅读七选五热点话题 体裁分类训练(高考模拟 名校真题).docx
  • 专题09 实验设计重方法-备战2022年中考化学必背手册(南京专用).docx专题09 实验设计重方法-备战2022年中考化学必背手册(南京专用).docx
  • 专题09 完成图表(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(成都专用).docx专题09 完成图表(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(成都专用).docx
  • 专题09 完成句子80题-2023年中考英语逆袭冲刺名校模拟真题特快专递(广州专用).docx专题09 完成句子80题-2023年中考英语逆袭冲刺名校模拟真题特快专递(广州专用).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1