分享
分享赚钱 收藏 举报 版权申诉 / 25

类型2022-2023学年度人教版九年级数学上册期末测评试题 卷(Ⅱ)(含答案详解).docx

  • 上传人:a****
  • 文档编号:640935
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:25
  • 大小:576.88KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年度人教版九年级数学上册期末测评试题 卷含答案详解 2022 2023 学年 度人 九年级 数学 上册 期末 测评 试题 答案 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、二次函数的图象如图所示,对称轴是直线下列结论:;(为实数)其中结论正确

    2、的个数为()A1个B2个C3个D4个2、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A4米B5米C2米D7米3、定义新运算,对于任意实数a,b满足,其中等式右边是通常的加法、减法、乘法运算,例如,若(k为实数) 是关于x的方程,则它的根的情况是()A有一个实根B有两个不相等的实数根C有两个相等的实数根D没有实数根4、如图,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转90,得到,则点的坐标为()A

    3、BCD5、用配方法解方程时,原方程应变形为()ABCD二、多选题(5小题,每小题4分,共计20分)1、如图,在的网格中,点,均在网格的格点上,下面结论正确的有() 线 封 密 内 号学级年名姓 线 封 密 外 A点是的外心B点是的外心C点是的外心D点是的外心2、(多选)若数使关于的一元二次方程有两个不相等的实数解,且使关于的分式方程的解为非负整数,则满足条件的的值为()A1B3C5D73、已知关于的方程,下列说法不正确的是()A当时,方程无解B当时,方程有两个相等的实数根C当时,方程有两个相等的实数根D当时,方程有两个不相等的实数根4、在图形旋转中,下列说法正确的是()A在图形上的每一点到旋转

    4、中心的距离相等B图形上每一点转动的角度相同C图形上可能存在不动的点D图形上任意两点的连线与其对应两点的连线长度相等5、下列方程中,关于x的一元二次方程有()Ax2=0Bax2+bx+c=0Cx23=xDa2+ax=0E(m1)x2+4x+=0FG=2H(x+1)2=x29第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图有一抛物线形的拱桥,拱高10米,跨度为40米,则该抛物线的表达式为_.2、关于的方程,k=_时,方程有实数根3、在平面直角坐标系中,二次函数过点(4,3),若当0xa 时,y 有最大值 7, 最小值 3,则 a 的取值范围是_4、如图,是的内接正三角形

    5、,点是圆心,点,分别在边,上,若,则的度数是_度5、已知关于的一元二次方程,有下列结论:当时,方程有两个不相等的实根;当时,方程不可能有两个异号的实根;当时,方程的两个实根不可能都小于1;当时,方程的两个实根一个大于3,另一个小于3以上4个结论中,正确的个数为_四、解答题(5小题,每小题8分,共计40分) 线 封 密 内 号学级年名姓 线 封 密 外 1、某超市经销一种商品,每件成本为50元经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件设该商品每件的销售价为x元,每个月的销售量为y件(1)求y与x的函数表达式;(2)当该

    6、商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?2、为帮助人民应对疫情,某药厂下调药品的价格某种药品经过连续两次降价后,由每盒元下调至元,已知每次下降的百分率相同(1)求这种药品每次降价的百分率是多少?(2)已知这种药品的成本为元,若按此降价幅度再一次降价,药厂是否亏本?3、已知x1,x2是关于x的一元二次方程x2-4mx+4m2-90的两实数根(1)若这个方程有一个根为-1,求m的值;(2)若这个方程的一个根大于-1,另一个根小于-1,求m的取值范围;(3)已知RtABC的一边长为7,x1,x2恰好是此三角形的另外两边的边长,求m的值4、某网店销售一款市场上畅销的蒸蛋器,进

    7、价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个(1)请直接写出y(个)与x(元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?5、如图,已知抛物线的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C(1)用配方法将抛物线的解析式化为顶点式:(),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求

    8、出其最小值和点R的坐标;(3)以AB为直径作N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是N的切线-参考答案-一、单选题1、C【解析】【分析】由抛物线开口方向得到,对称轴在轴右侧,得到与异号,又抛物线与轴正半轴相交,得到,可得出,选项错误;把代入中得,所以正确;由时对应的函数值,可得出,得到,由,得到,选项正确;由对称轴为直线,即时,有最小值,可得结论,即可得到正确【详解】解:抛物线开口向上,抛物线的对称轴在轴右侧,抛物线与轴交于负半轴, 线 封 密 内 号学级年名姓 线 封 密 外 ,错误;当时,把代入中得,所以正确;当时,即,所以正确;抛物线的对称轴为直线,时,函数的最小值为,即

    9、,所以正确故选C【考点】本题考查了二次函数图象与系数的关系:二次项系数决定抛物线的开口方向和大小当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时,对称轴在轴左;当与异号时,对称轴在轴右常数项决定抛物线与轴交点:抛物线与轴交于抛物线与轴交点个数由判别式确定:时,抛物线与轴有2个交点;时,抛物线与轴有1个交点;时,抛物线与轴没有交点2、B【解析】【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=10代入可求解【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF

    10、=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,BC=10,点B(5,0),0=a(5)2+,a=-,大孔所在抛物线解析式为y=-x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(xb)2,EF=14,点E的横坐标为-7,点E坐标为(-7,-),-=m(xb)2, 线 封 密 内 号学级年名姓 线 封 密 外 x1=+b,x2=-+b,MN=4,|+b-(-+b)|=4m=-,顶点为A的小孔所在抛物线的解析式为y=-(xb)2,大孔水面宽度为20米,当x=-10时,y=-,-=-(xb)2,x1=+b,x2=-+b,单个小孔的水面宽度=|(+b)-(-+

    11、b)|=5(米),故选:B【考点】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答3、B【解析】【分析】将按照题中的新运算方法展开,可得,所以可得,化简得:,可得,即可得出答案.【详解】解:根据新运算法则可得:,则即为,整理得:,则,可得:,;,方程有两个不相等的实数根;故答案选:B.【考点】本题考查新定义运算以及一元二次方程根的判别式.注意观察题干中新定义运算的计算方法,不能出错;在求一元二次方程根的判别式时,含有参数的一元二次方程要尤其注意各项系数的符号.4、A【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B的坐标即可【详

    12、解】ABO如图所示,点B(2,1)故选A 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键5、D【解析】【分析】移项,配方,变形后即可得出选项【详解】解:x2-4x=1,x2-4x+4=1+4,(x-2)2=5,故选:D【考点】本题考查了解一元二次方程,能够正确配方是解此题的关键二、多选题1、ABCD【解析】【分析】连接HB、HD,利用勾股定理可得,则根据三角形外心的定义可对四个选项进行判断【详解】解:如图,连接HB、HD,根据勾股定理可得:,点是的外心,点是的外心,点是的外心,点是的外心,ABCD都是正确的故选:ABCD【

    13、考点】本题考查了三角形的外心和勾股定理的应用,熟练掌握三角形的外心到三角形的三个顶点的距离相等是解决本题的关键2、AC【解析】【分析】根据一元二次方程根的判别式及分式有意义的条件和分式方程的解为非负整数分别求出a的取值范围,即可得答案【详解】关于的一元二次方程有两个不相等的实数解,解得:, 线 封 密 内 号学级年名姓 线 封 密 外 ,解得:,关于的分式方程的解为非负整数,且,解得:且,且a3,是整数,a=1或5,故选:AC【考点】本题考查一元二次方程根的判别式、解分式方程及分式有意义的条件,正确得出两个不等式的解集是解题关键,注意分式的分母不为0的隐含条件,避免漏解3、ABD【解析】【分析

    14、】利用k的值,分别代入求出方程的根的情况即可【详解】关于的方程,A当k= 0时,x- 1=0,则x=1,故此选项错误,符合题意;B当k = 1时,- 1 = 0,x=1,方程有两个不相等的实数解,故此选项错误,符合题意;C当k=-1时,则,此时方程有两个相等的实数根,故此选项正确,不符合题意;D当时,根据A选项,若k= 0,此时方程有一个实数根,故此选项错误,符合题意,故选:ABD【考点】此题主要考查了一元二次方程的解,代入k的值判断方程根的情况是解题关键4、BCD【解析】【分析】根据旋转的性质分别对每一个选项进行判断即可【详解】解:A、由旋转的性质可得,图形上对应点到旋转中心的距离相等,故此

    15、选项不符合题意;B、 由旋转的性质可得,图形上的每一点转动的角度相同,故此选项符合题意;C、由旋转的性质可得,图形上可能存在不动点(例如此点为旋转中心),故此选项符合题意;D、 由旋转的性质可得,图形上对应两点的连线与其对应两点的连线相等,故此选项符合题意;故选BCD【考点】本题主要考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等5、AC【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据一元二次方程的定义逐个判断即可【详解】解:A.x2=0 ,C.x23=x 符合一元二次方程的定义;B.ax2+bx+c=0中,当a

    16、=0时,不是一元二次方程;D.a2+a-x=0是关于x的一元一次方程;E.(m1)x2+4x+=0,当m=1时为关于x的一元一次方程;F.+ =分母中含有字母,是分式方程;G.=2是无理方程;H.(x+1)2=x2-9展开后为x2+2x+1=x2-9,即2x+1=-9是一元一次方程故选AC【考点】本题考查了一元二次方程的定义,一元二次方程具有以下三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程三、填空题1、【解析】【分析】由题意抛物线过点(40,0),顶点坐标为(20,10),设抛物线的解析式为,从而求出a的值,然后确定抛物线的解析式【详解】解:依题意得此函数解析

    17、式顶点为,设解析式为,又函数图象经过,.故答案为 .【考点】本题主要考查用待定系数法确定二次函数的解析式,解题时应根据情况设抛物线的解析式从而使解题简单,此题设为顶点式比较简单.2、【解析】【分析】由于最高次项前面的系数不确定,所以进行分类讨论:当时,直接进行求解;当时,方程为一元二次方程,利用根的判别式,确定k的取值范围,最后综合即可求出满足题意的k的取值范围【详解】解:当时,方程化为:,解得:,符合题意;当时,方程有实数根,即,解得:,且; 线 封 密 内 号学级年名姓 线 封 密 外 综上所述,当时,方程有实数根,故答案为:【考点】题目主要考查方程的解的情况,包括一元一次方程及一元二次方

    18、程的求解,分情况讨论方程的解是解题关键3、2a4【解析】【分析】先求得抛物线的解析式,根据二次函数的性质以及二次函数图象上点的坐标特征即可得到a的取值范围【详解】解:二次函数y=-x2+mx+3过点(4,3),3=-16+4m+3,m=4,y=-x2+4x+3,y=-x2+4x+3=-(x-2)2+7,抛物线开口向下,对称轴是x=2,顶点为(2,7),函数有最大值7,把y=3代入y=-x2+4x+3得3=-x2+4x+3,解得x=0或x=4,当0xa时,y有最大值7,最小值3,2a4故答案为:2a4【考点】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,熟练掌握二次函数的性

    19、质是解题的关键4、120【解析】【分析】本题可通过构造辅助线,利用垂径定理证明角等,继而利用SAS定理证明三角形全等,最后根据角的互换结合同弧所对的圆周角等于圆心角的一半求解本题【详解】连接OA,OB,作OHAC,OMAB,如下图所示:因为等边三角形ABC,OHAC,OMAB,由垂径定理得:AH=AM,又因为OA=OA,故OAHOAM(HL)OAH=OAM又OA=OB,AD=EB,OAB=OBA=OAD,ODAOEB(SAS),DOA=EOB,DOE=DOA+AOE=AOE+EOB=AOB又C=60以及同弧,AOB=DOE=120故本题答案为:120 线 封 密 内 号学级年名姓 线 封 密

    20、外 【考点】本题考查圆与等边三角形的综合,本题目需要根据等角的互换将所求问题进行转化,构造辅助线是本题难点,全等以及垂径定理的应用在圆综合题目极为常见,圆心角、弧、圆周角的关系需熟练掌握5、【解析】【分析】由根的判别式,根与系数的关系进行判断,即可得到答案【详解】解:根据题意,一元二次方程,;当,即时,方程有两个不相等的实根;故正确;当,解得:,方程有两个同号的实数根,则当时,方程可能有两个异号的实根;故错误;抛物线的对称轴为:,则当时,方程的两个实根不可能都小于1;故正确;由,则,解得:或;故正确;正确的结论有;故答案为:【考点】本题考查了二次函数的性质,一元二次方程根的判别式,根与系数的关

    21、系,解题的关键是掌握所学的知识进行解题四、解答题1、(1)y-10x+900;(2)每件销售价为70元时,获得最大利润;最大利润为4000元【解析】【分析】(1)根据等量关系“利润(售价进价)销量”列出函数表达式即可(2)根据(1)中列出函数关系式,配方后依据二次函数的性质求得利润最大值【详解】解:(1)根据题意,y30010(x60)=-10x+900,y与x的函数表达式为:y-10x+900;(2)设利润为w,由(1)知:w(x50)(-10x+900)=10x21400x45000,w10(x70)24000,每件销售价为70元时,获得最大利润;最大利润为4000元【考点】本题考查的是二

    22、次函数在实际生活中的应用此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式2、(1);(2)不亏本,见解析【解析】【分析】(1)设这种药品每次降价的百分率是,根据该药品的原价及经过两次降价后的价格,即可得出关 线 封 密 内 号学级年名姓 线 封 密 外 于的一元二次方程,求解即可得出结论;(2)根据经过连续三次降价后的价格=经过连续两次降价后的价格(1-20%),即可求出再次降价后的价格,将其与100元进行比较后即可得出结论【详解】(1)解:设每次下降的百分率为, 依题意,得: ,解得:(不合题意,舍去)答:这种药品每次降价的百分率是20%;(2)128(1-20%)=10

    23、2.4,102.4100,按此降价幅度再一次降价,药厂不会亏本【考点】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键3、 (1)m的值为1或-2(2)-2m1(3)m或m【解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的两根,然后列出m的不等式组,求出m的取值范围;(3)首先用m表示出方程的两根,分直角ABC的斜边长为7或2m+3,根据勾股定理求出m的值.(1)解:x1,x2是一元二次方程x2-4mx+4m2-90的两实数根,这个方程有一个根为-1,将x-1代入方程x2-4mx+4m2-90,得1+4m+4m2-

    24、90解得m1或m-2m的值为1或-2(2)解:x2-4mx+4m29,(x-2m)29,即x-2m3x12m+3,x22m-32m+32m-3,解得-2m1m的取值范围是-2m1(3)解:由(2)可知方程x2-4mx+4m2-90的两根分别为2m+3,2m-3若RtABC的斜边长为7,则有49(2m+3)2+(2m-3)2解得m边长必须是正数,m若斜边为2m+3,则(2m+3)2(2m-3)2+72 线 封 密 内 号学级年名姓 线 封 密 外 解得m综上所述,m或m【考点】本题主要考查了根的判别式与根与系数的关系的知识,解答本题的关键是熟练掌握根与系数关系以及根的判别式的知识,此题难度一般.

    25、4、(1)y=-2x+220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元【解析】【分析】(1)根据题意中销售量y(个)与售价x(元)之间的关系即可得到结论;(2)根据题意列出方程(-2x+220)(x-40)=2400,解方程即可求解;(3)设每星期利润为w元,构建二次函数模型,利用二次函数性质即可解决问题【详解】(1)由题意可得,y=100-2(x-60)=-2x+220;(2)由题意可得,(-2x+220)(x-40)=2400,解得,当销售单价是70元或80元时,该网店每星期的销售利

    26、润是2400元答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元(3)设该网店每星期的销售利润为w元,由题意可得w=(-2x+220)(x-40)=,当时,w有最大值,最大值为2450,当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元【考点】本题考查了二次函数的应用,解题的关键是构建二次函数模型,利用二次函数的性质解决最值问题5、(1),M(,);(2),(,);(3)证明见试题解析【解析】【详解】试题分析:(1)利用配方法把一般式转化为顶点式,然后根据二次函数的性质求出抛物线的顶

    27、点坐标;(2)连接BC,则BC与对称轴的交点为R,此时CR+AR的值最小;先求出点A、B、C的坐标,再利用待定系数法求出直线BC的解析式,进而求出其最小值和点R的坐标;(3)设点P坐标为(x,)根据NPAB=,列出方程,解方程得到点P坐标,再计算得出,由勾股定理的逆定理得出MPN=90,然后利用切线的判定定理即可证明直线MP是N的切线试题解析:(1)=,抛物线的解析式化为顶点式为:,顶点M的坐标是(,);(2),当y=0时,解得x=1或6,A(1,0),B(6,0),x=0时,y=3,C(0,3)连接BC,则BC与对称轴x=的交点为R,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为BC=设直线BC的解析式为,B(6,0),C(0,3),解得:,直线BC的 线 封 密 内 号学级年名姓 线 封 密 外 解析式为:,令x=,得y=,R点坐标为(,);(3)设点P坐标为(x,)A(1,0),B(6,0),N(,0),以AB为直径的N的半径为AB=,NP=,即,移项得,得:,整理得:,解得(与A重合,舍去),(在对称轴的右侧,舍去),(与B重合,舍去),点P坐标为(2,2)M(,),N(,0),=,=, =,MPN=90,点P在N上,直线MP是N的切线考点:1二次函数综合题;2最值问题;3切线的判定;4压轴题

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版九年级数学上册期末测评试题 卷(Ⅱ)(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-640935.html
    相关资源 更多
  • 专题12 词汇考点汇总-2023年江苏中考英语一轮复习(牛津译林版).docx专题12 词汇考点汇总-2023年江苏中考英语一轮复习(牛津译林版).docx
  • 专题12 词汇替换句式应用及高考应用文练习-备战2022年高考英语书面表达应用文满分攻略.docx专题12 词汇替换句式应用及高考应用文练习-备战2022年高考英语书面表达应用文满分攻略.docx
  • 专题12 解放战争 2023年中考历史一轮复习专题训练(湖南专用).docx专题12 解放战争 2023年中考历史一轮复习专题训练(湖南专用).docx
  • 专题12 补全对话-2020-2021学年八年级英语下学期期中专项复习(外研版).docx专题12 补全对话-2020-2021学年八年级英语下学期期中专项复习(外研版).docx
  • 专题12 自测section 23---24-2021高考英语3500考纲词汇自测.docx专题12 自测section 23---24-2021高考英语3500考纲词汇自测.docx
  • 专题12 胡不归求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx专题12 胡不归求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx
  • 专题12 胡不归求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx专题12 胡不归求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx
  • 专题12 综合与实践(教师版).docx专题12 综合与实践(教师版).docx
  • 专题12 综合与实践(学生版).docx专题12 综合与实践(学生版).docx
  • 专题12 简单机械-(3大模块知识清单 5个易混易错 5种方法技巧 典例真题精析)-【口袋书】2024年中考物理一轮复习知识清单(解析版).docx专题12 简单机械-(3大模块知识清单 5个易混易错 5种方法技巧 典例真题精析)-【口袋书】2024年中考物理一轮复习知识清单(解析版).docx
  • 专题12 简单机械-(3大模块知识清单 5个易混易错 5种方法技巧 典例真题精析)-【口袋书】2024年中考物理一轮复习知识清单(原卷版).docx专题12 简单机械-(3大模块知识清单 5个易混易错 5种方法技巧 典例真题精析)-【口袋书】2024年中考物理一轮复习知识清单(原卷版).docx
  • 专题12 空间向量的坐标表示8种常见考法归类(原卷版) .docx专题12 空间向量的坐标表示8种常见考法归类(原卷版) .docx
  • 专题12 祈使句 八年级英语提分方案(人教新目标)【学.docx专题12 祈使句 八年级英语提分方案(人教新目标)【学.docx
  • 专题12 祈使句 2020-2021学年【教育机构专用教材 寒假作业】八年级英语提分方案(外研版)【学科网名师堂】.docx专题12 祈使句 2020-2021学年【教育机构专用教材 寒假作业】八年级英语提分方案(外研版)【学科网名师堂】.docx
  • 专题12 短文首字母填空15篇(解析版).docx专题12 短文首字母填空15篇(解析版).docx
  • 专题12 短文首字母填空15篇(名校最新期中真题)-2021-2022学年七年级英语下学期期中复习查缺补漏冲刺满分(人教版).docx专题12 短文首字母填空15篇(名校最新期中真题)-2021-2022学年七年级英语下学期期中复习查缺补漏冲刺满分(人教版).docx
  • 专题12 短文首字母填空15篇(原卷版).docx专题12 短文首字母填空15篇(原卷版).docx
  • 专题12 盐和化肥(原卷版).docx专题12 盐和化肥(原卷版).docx
  • 专题12 电磁感应-【口袋书】2024年高考物理一轮复习知识清单(全国通用).docx专题12 电磁感应-【口袋书】2024年高考物理一轮复习知识清单(全国通用).docx
  • 专题12 电流 电压 电阻和电路-2021年全国中考物理真题专项汇编(第一期)(解析版).docx专题12 电流 电压 电阻和电路-2021年全国中考物理真题专项汇编(第一期)(解析版).docx
  • 专题12 电功和电功率---四川省2019年、2020年物理中考试题分类汇编(含解析)-试卷中心.docx专题12 电功和电功率---四川省2019年、2020年物理中考试题分类汇编(含解析)-试卷中心.docx
  • 专题12 环形跑道问题(二)-2022-2023学年小升初数学行程问题高频常考易错真题专项汇编(通用版).docx专题12 环形跑道问题(二)-2022-2023学年小升初数学行程问题高频常考易错真题专项汇编(通用版).docx
  • 专题12 物质的量浓度-【题高分】2022-2023学年高一化学同步教学专题讲义(人教版2019必修第一册).docx专题12 物质的量浓度-【题高分】2022-2023学年高一化学同步教学专题讲义(人教版2019必修第一册).docx
  • 专题12 牛津译林版初中英语单元错题集—9AU4.docx专题12 牛津译林版初中英语单元错题集—9AU4.docx
  • 专题12 牛津译林版初中英语单元错题集—8BU4.docx专题12 牛津译林版初中英语单元错题集—8BU4.docx
  • 专题12 概率(学生版).docx专题12 概率(学生版).docx
  • 专题12 概率(3大易错点分析 解题模板 举一反三 易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx专题12 概率(3大易错点分析 解题模板 举一反三 易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
  • 专题12 概率(3大易错点分析 解题模板 举一反三 易错题通关)-备战2024年高考数学考试易错题(新高考专用)(原卷版).docx专题12 概率(3大易错点分析 解题模板 举一反三 易错题通关)-备战2024年高考数学考试易错题(新高考专用)(原卷版).docx
  • 专题12 椭圆、双曲线的焦点弦被焦点分成定比-2021-2022学年高二数学培优辅导(人教A版2019选择性必修第一册).docx专题12 椭圆、双曲线的焦点弦被焦点分成定比-2021-2022学年高二数学培优辅导(人教A版2019选择性必修第一册).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1