分享
分享赚钱 收藏 举报 版权申诉 / 30

类型2022-2023学年度人教版九年级数学上册第二十四章圆专题测试试卷(详解版).docx

  • 上传人:a****
  • 文档编号:641509
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:30
  • 大小:841.86KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 度人 九年级 数学 上册 第二 十四 专题 测试 试卷 详解
    资源描述:

    1、人教版九年级数学上册第二十四章圆专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,螺母的外围可以看作是正六边形ABCDEF,已知这个正六边形的半径是2,则它的周长是()A6B12C12D242

    2、、如图,点在上,则()ABCD3、如图,AC是O的直径,弦AB/CD,若BAC=32,则AOD等于()A64B48C32D764、已知扇形的半径为6,圆心角为则它的面积是()ABCD5、如图,一段公路的转弯处是一段圆弧,则的展直长度为()A3B6C9D126、如图,是的直径,若,则的度数是()A32B60C68D647、已知中,点P为边AB的中点,以点C为圆心,长度r为半径画圆,使得点A,P在C内,点B在C外,则半径r的取值范围是()ABCD8、一个商标图案如图中阴影部分,在长方形中,以点为圆心,为半径作圆与的延长线相交于点,则商标图案的面积是()ABCD9、下列图形为正多边形的是()ABCD

    3、10、如图,在中,以点为圆心,为半径的圆与所在直线的位置关系是()A相交B相离C相切D无法判断第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线yx+6与x轴、y轴分别交于A、B两点,点P是以C(1,0)为圆心,1为半径的圆上一点,连接PA,PB,则PAB面积的最大值为_2、如图,是的直径,弦于点,且,则的半径为_3、已知在平面直角坐标系中,点的坐标为是抛物线对称轴上的一个动点小明经探究发现:当的值确定时,抛物线的对称轴上能使为直角三角形的点的个数也随之确定若抛物线的对称轴上存在3个不同的点,使为直角三角形,则的值是_4、如图 1 是台湾某品牌手工蛋卷的外包装盒

    4、,其截面图如图 2 所示,盒子上方是一段圆弧(弧 MN ).D,E 为手提带的固定点, DE 与弧MN 所在的圆相切,DE=2.手提带自然下垂时,最低点为C,且呈抛物线形,抛物线与弧MN 交于点 F,G.若CDE 是等腰直角三角形,且点 C,F 到盒子底部 AB 的距离分别为 1, ,则弧MN 所在的圆的半径为_ 5、如图,以为直径作半圆,圆心为点;以点为圆心,为半径作,过点作的平行线交两弧于点、,则阴影部分的面积是_.三、解答题(5小题,每小题10分,共计50分)1、已知抛物线经过点(m,4),交x轴于A,B两点(A在B左边),交y轴于C点对于任意实数n,不等式恒成立(1)抛物线解析式;(2

    5、)在BC上方的抛物线对称轴上是否存在点D,使得BDC2BAC,若有求出点D的坐标,若没有,请说明理由;(3)将抛物线沿x轴正方向平移一个单位,把得到的图象在x轴下方的部分沿x轴向上翻折,图的其余部分保持不变,得到一个新的图象G,若直线y=x+b与新图象G有四个交点,求b的取值范围(直接写出结果即可)2、如图,四边形内接于,对角线,垂足为,于点,直线与直线于点(1)若点在内,如图1,求证:和关于直线对称;(2)连接,若,且与相切,如图2,求的度数3、已知:如图,ABC中,ABAC,ABBC求作:线段BD,使得点D在线段AC上,且CBDBAC作法:以点A为圆心,AB长为半径画圆;以点C为圆心,BC

    6、长为半径画弧,交A于点P(不与点B重合);连接BP交AC于点D线段BD就是所求作的线段(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接PCABAC,点C在A上点P在A上,CPBBAC( )(填推理的依据)BCPC,CBD ( )(填推理的依据)CBDBAC4、如图,比较与的长度,并证明你的结论5、如图,在中,以为直径的与交于点,连接(1)求证:;(2)若与相切,求的度数;(3)用无刻度的直尺和圆规作出劣弧的中点(不写作法,保留作图痕迹)-参考答案-一、单选题1、C【解析】【分析】如图,先求解正六边形的中心角,再证明是等边三角形,从而可得答案【详解】解:如图,

    7、为正六边形的中心,为正六边形的半径,为等边三角形,正六边形ABCDEF的周长为故选:【考点】本题考查的是正多边形与圆,正多边形的半径,中心角,周长,掌握以上知识是解题的关键2、D【解析】【分析】先证明再利用等弧的性质及圆周角定理可得答案【详解】解: 点在上, 故选:【考点】本题考查的两条弧,两个圆心角,两条弦之间的关系,圆周角定理,等弧的概念与性质,掌握同弧或等弧的概念与性质是解题的关键3、A【解析】【分析】由AB/CD,BAC32,根据平行线的性质,即可求得ACD的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得AOD的度数【详解】解:弦AB/CD,BA

    8、C=32,ACDBAD32, AOD=2ACD23264.故选:A【考点】此题考查了圆周角定理与平行线的性质解题的关键是注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半4、D【解析】【分析】已知扇形的半径和圆心角度数求扇形的面积,选择公式直接计算即可【详解】解:故选:D【考点】本题考查扇形面积公式的知识点,熟知扇形面积公式及适用条件是解题的关键5、B【解析】【详解】分析:直接利用弧长公式计算得出答案详解:的展直长度为:=6(m)故选B点睛:此题主要考查了弧长计算,正确掌握弧长公式是解题关键6、D【解析】【分析】根据已知条件和圆心角、弧、弦的关系,可知,然后根据对顶角相

    9、等即可求解【详解】,故选:D【考点】本题主要考查圆心角、弧、弦的关系、对顶角相等,较简单,掌握基本概念是解题关键7、D【解析】【分析】根据勾股定理,得AB=5,由P为AB的中点,得CP=,要使点A,P在C内,r3,r4,从而确定r的取值范围.【详解】点A在C内,r3,点B在C外,r4,故选:D.【考点】本题考查了点和圆的位置关系,利用数形结合思想是解题的关键.8、D【解析】【分析】根据题意作辅助线DE、EF使BCEF为一矩形,从图中可以看出阴影部分的面积=三角形的面积-(正方形的面积-扇形的面积),依据面积公式进行计算即可得出答案【详解】解:作辅助线DE、EF使BCEF为一矩形则SCEF=(8

    10、+4)42=24cm2,S正方形ADEF=44=16cm2,S扇形ADF=4cm2,阴影部分的面积=24-(16-4)=故选:D【考点】本题主要考查扇形的面积计算,解题的关键是作出辅助线并从图中看出阴影部分的面积是由哪几部分组成的9、D【解析】【分析】根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形可得答案【详解】根据正多边形的定义,得到D中图形是正五边形故选D【考点】本题考查了正多边形,关键是掌握正多边形的定义10、A【解析】【分析】过点C作CDAB于点D,由题意易得AB=5,然后可得,进而根据直线与圆的位置关系可求解【详解】解:过点C作CDAB于点D,如图所示:,根据等积

    11、法可得,以点为圆心,为半径的圆,该圆的半径为,圆与AB所在的直线的位置关系为相交,故选A【考点】本题主要考查直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题的关键二、填空题1、32【解析】【分析】如图,作CHAB于H交O于E、F,求出A、B的坐标,根据勾股定理求出AB,再由SABCABCHOBAC求出点C到AB的距离CH,即可求出圆C上点到AB的最大距离,根据面积公式求出即可【详解】如图,作CHAB于H交O于E、F,直线yx+6与x轴、y轴分别交于A、B两点,当y=0时,可得0=x+6,解得:x=8,A(8,0),当x=0时,得y=6,B(0,6),OA8,OB6,10,C(1,0),AC

    12、=8+1=9,SABCABCHOBAC,CH=5.4,FHCH+CF=5.4+16.4,即C上到AB的最大距离为6.4,PAB面积的最大值106.432,故答案为32【考点】本题考查了三角形的面积,勾股定理、三角形等面积法求高、求圆心到直线的距离等知识,解此题的关键是求出圆上的点到直线AB的最大距离2、【解析】【分析】根据垂径定理得出CE=DE,再由勾股定理得出OD2=DE2+(AE-OA)2,代入求解即可【详解】解:CDAB,CE=DE=CD,AE=CD=6,CE=DE=3,OD=OB=OA,OE=AE-OA,在RtODE中,由勾股定理可得:OD2=DE2+(AE-OA)2,即:OD2=32

    13、+(6-OD)2,解得:OD=,O的半径为:,故答案为:【考点】本题考查了垂径定理、勾股定理等知识;熟练掌握垂径定理和勾股定理是解题的关键3、2或【解析】【分析】分,和 确定点M的运动范围,结合抛物线的对称轴与,共有三个不同的交点,确定对称轴的位置即可得出结论【详解】解:由题意得:O(0,0),A(3,4)为直角三角形,则有:当时, 点M在与OA垂直的直线上运动 (不含点O);如图,当时,点M在与OA垂直的直线上运动 (不含点A);当时,点M在与OA为直径的圆上运动,圆心为点P,点P为OA的中点, 半径r= 抛物线的对称轴与x轴垂直由题意得,抛物线的对称轴与,共有三个不同的交点,抛物线的对称轴

    14、为的两条切线,而点P到切线,的距离 ,又直线的解析式为:;直线的解析式为:;或4或-8故答案为:2或-8【考点】本题是二次函数的综合题型,其中涉及到的知识点有圆的切线的判定,直角三角形的判定,综合性较强,有一定难度运用数形结合、分类讨论是解题的关键4、.【解析】【分析】以DE的垂直平分线为y轴,AB所在的直线为x轴建立平面直角坐标系,设抛物线的表达式为y=ax2+1,因为CDE是等腰直角三角形,DE=2,得点E的坐标为(1,2),可得抛物线的表达式为y=x2+1,把当y代入抛物线表达式,求得MH的长,再在RtFHM中,用勾股定理建立方程,求得所在的圆的半径【详解】如图,以DE的垂直平分线为y轴

    15、,AB所在的直线为x轴建立平面直角坐标系,设所在的圆的圆心为P,半径为r,过F作y轴的垂线交y轴于H,设抛物线的表达式为y=ax2+1CDE是等腰直角三角形,DE=2,点E的坐标为(1,2),代入抛物线的表达式,得:2=a+1,a=1,抛物线的表达式为y=x2+1,当y时,即,解得:,FHFHM=90,DE与所在的圆相切,解得:,所在的圆的半径为故答案为【考点】本题考查了圆的切线的性质,待定系数法求抛物线的表达式,垂径定理解题的关键是建立合适的平面直角坐标系得出抛物线的表达式5、【解析】【分析】连接CE,如图,利用平行线的性质得COEEOB90,再利用勾股定理计算出OE,利用余弦的定义得到OC

    16、E60,然后根据扇形面积公式,利用S阴影部分S扇形BCESOCES扇形BOD进行计算即可【详解】解:连接CE,如图,ACBC,ACB90,ACOE,COEEOB90,OC1,CE2,OE,cosOCE,OCE60,S阴影部分S扇形BCESOCES扇形BOD,故答案为【考点】本题考查了扇形面积的计算:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积三、解答题1、10参考答案:1(1);(2)点D的坐标为(1,1);(3)【解析】【分析】(1)由不等式恒成立可得点(m,4)是抛物线的顶点坐标,求出,将点(t,4)代入求出t的值即可;(2)作线段BC的垂直平分线交对称轴于点D,交BC于E,

    17、则点D是ABC的外心,可得BDC2BAC,然后求出直线BC,直线DE的解析式即可解决问题;(3)作出图象G,求出直线y=x+b与图象G有三个交点时b的值,则根据图象可得直线y=x+b与图象G有四个交点时b的取值范围(1)解:抛物线的对称轴为,不等式恒成立,抛物线的顶点坐标为(m,4),将点(t,4)代入得:,解得:(舍去),抛物线解析式为:;(2)解:令,解得:,A(1,0),B(3,0),由可得C(0,3),对称轴为,作线段BC的垂直平分线交对称轴于点D,交BC于E,E(,),抛物线对称轴是线段AB的垂直平分线,点D是ABC的外心,BDC2BAC,设直线BC的解析式为,代入B(3,0),C(

    18、0,3)得,解得:,直线BC的解析式为,设直线DE的解析式为,代入E(,)得,m0,直线DE的解析式为,当时,点D的坐标为(1,1);(3)解:图象G如图所示,由平移可知图象G过点(0,0),当直线y=x+b过点(0,0)时,b0,将抛物线沿x轴正方向平移一个单位后解析式为,沿x轴向上翻折后解析式为,由,得,整理得:,令,解得:,故若直线y=x+b与新图象G有四个交点,b的取值范围为:【考点】本题考查了待定系数法的应用,二次函数的图象和性质,一次函数的图象和性质,三角形外心的性质,二次函数图象的平移及翻转等知识,熟练掌握数形结合思想的应用是解题的关键2、(1)见解析;(2)【解析】【分析】(1

    19、)根据垂直及同弧所对圆周角相等性质,可得,可证与全等,得到,进一步即可证点和关于直线成轴对称;(2)作出相应辅助线如解析图,可得与全等,利用全等三角形的性质及切线的性质,可得,根据平行线的性质及三角形内角和即可得出答案【详解】解:(1)证明:,又同弧所对圆周角相等,在与中,又,点和关于直线成轴对称;(2)如图,延长交于点,连接,、四点共圆,、四点共圆,在与中,为等腰直角三角形,又,与相切,【考点】题目主要考查圆的有关性质、三角形全等、成轴对称、平行线性质等,作出相应辅助线及对各知识点的熟练运用是解题的关键3、(1)见解析;(2)圆周角定理;,圆周角定理的推论【解析】【分析】(1)利用几何语言画

    20、出对应的几何图形;(2)先根据圆周角定理得到,再利用等腰三角形的性质得到,从而得到【详解】解:(1)如图,为所作;(2)证明:连接,如图,点在上点在上,(圆周角定理),(圆周角定理的推论)故答案为:圆周角定理;圆周角定理的推论【考点】本题考查了作图复杂作图、也考查了圆周角定理,解题的关键是掌握复杂作图的五种基本作图的基本方法,一般是结合了几何图形的性质和基本作图方法熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作4、,见解析【解析】【分析】根据圆心角、弧、弦的关系,由AD=BC解得,继而得到【详解】解:,证明如下:ADBC,即【考点】本题考查圆心角、弧、弦的关系

    21、,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等5、 (1)证明见详解(2)(3)作图见详解【解析】【分析】(1)根据直径所对的圆周角是直角、等腰三角形的三线合一即可证明;(2)根据切线的性质可以得到,然后在等腰直角三角形中即可求解;(3)根据等弧所对的圆周角相等,可知可以作出AD的垂直平分线,的角平分线,的角平分线等方法均可得到结论(1)证明:是的直径,(2)与相切,又,(3)如下图,点就是所要作的的中点【考点】本题考查了等腰三角形的三线合一、切线的性质、以及尺规作图、等弧所对的圆周角相等,理解圆的相关知识并掌握基本的尺规作图方法是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版九年级数学上册第二十四章圆专题测试试卷(详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-641509.html
    相关资源 更多
  • 六年级上册英语期末试题轻巧夺冠_1516河北省(扫描版冀教版).docx六年级上册英语期末试题轻巧夺冠_1516河北省(扫描版冀教版).docx
  • 六年级上册英语期末试卷轻巧夺冠9_1516人教版(无答案).docx六年级上册英语期末试卷轻巧夺冠9_1516人教版(无答案).docx
  • 六年级上册英语期末试卷轻巧夺冠99_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠99_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠99_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠99_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠98_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠98_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠97_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠97_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠97_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠97_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠96_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠96_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠95_1516人教版(无答案).docx六年级上册英语期末试卷轻巧夺冠95_1516人教版(无答案).docx
  • 六年级上册英语期末试卷轻巧夺冠94_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠94_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠92_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠92_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠91_1516人教版(无答案).docx六年级上册英语期末试卷轻巧夺冠91_1516人教版(无答案).docx
  • 六年级上册英语期末试卷轻巧夺冠90_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠90_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠90_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠90_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠8_1516人教版(无答案).docx六年级上册英语期末试卷轻巧夺冠8_1516人教版(无答案).docx
  • 六年级上册英语期末试卷轻巧夺冠89_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠89_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠89_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠89_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠88_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠88_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠87_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠87_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠86_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠86_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠85_1516人教版(无答案).docx六年级上册英语期末试卷轻巧夺冠85_1516人教版(无答案).docx
  • 六年级上册英语期末试卷轻巧夺冠83_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠83_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠82_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠82_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠81_1516人教版(无答案).docx六年级上册英语期末试卷轻巧夺冠81_1516人教版(无答案).docx
  • 六年级上册英语期末试卷轻巧夺冠80_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠80_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠79_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠79_1516人教版(无答案无听力材料).docx
  • 六年级上册英语期末试卷轻巧夺冠77_1516人教版(无答案).docx六年级上册英语期末试卷轻巧夺冠77_1516人教版(无答案).docx
  • 六年级上册英语期末试卷轻巧夺冠76_1516人教版(无答案).docx六年级上册英语期末试卷轻巧夺冠76_1516人教版(无答案).docx
  • 六年级上册英语期末试卷轻巧夺冠75_1516人教版(无答案无听力材料).docx六年级上册英语期末试卷轻巧夺冠75_1516人教版(无答案无听力材料).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1