分享
分享赚钱 收藏 举报 版权申诉 / 29

类型2022-2023学年综合复习人教版九年级数学上册期中考试题 B卷(详解版).docx

  • 上传人:a****
  • 文档编号:646736
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:29
  • 大小:523.18KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年综合复习人教版九年级数学上册期中考试题 B卷详解版 2022 2023 学年 综合 复习 人教版 九年级 数学 上册 期中 考试题 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中考试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式

    2、是()ABCD2、如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,图2是点运动时随变化的关系图象,则的长为()ABCD3、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD4、已知二次函数yax2+bx+c与自变量x的部分对应值如表,下列说法错误的是()x1013y3131Aa0B方程ax2+bx+c2的正根在4与5之间C2a+b0D若点(5,y1)、(,y2)都在函数图象上,则y1y25、函数yax与yax2+a(a0)在同一直角坐标系中的大致图象可能是()ABCD二、多选题(5小题,每小题4分,共计20分)1、在同一平面直角坐标系中,如图所示,正比例函数与一次函数

    3、的图象则二次函数的图象可能是() 线 封 密 内 号学级年名姓 线 封 密 外 ABCD2、如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式可能是()Ay=x21By=x2+6x+5Cy=x2+4x+4Dy=x2+8x+173、已知抛物线y=a+bx+c中,4ab=0,ab+c0,抛物线与x轴有两个不同的交点,且这两个交点之间的距离小于2则下列结论中正确的有()Aabc0,Bc0,Ca+b+c0,D4ac4、在图形旋转中,下列说法正确的是()A在图形上的每一点到旋转中心的距离相

    4、等B图形上每一点转动的角度相同C图形上可能存在不动的点D图形上任意两点的连线与其对应两点的连线长度相等5、如图是抛物线的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),点P在抛物线上,且在直线AB上方,则下列结论正确的是()AB方程有两个相等的实根CD点P到直线AB的最大距离第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件经调查发现,这种生活用品的销售单价每提高1元,其销售量相应减少4件,那么将销售价定为_元时,才能使每天所获销售利润最大2、若正方体的棱长为,表面积为,则

    5、与的关系式为_3、如图,正方形ABCD的边长为6,点E在边CD上以点A为中心,把ADE顺时针旋转90至ABF的位置若DE2,则FE_4、若二次函数yx2+mx在1x2时的最大值为3,那么m的值是_5、将抛物线向上平移()个单位长度,k,平移后的抛物线与双 线 封 密 内 号学级年名姓 线 封 密 外 曲线y(x0)交于点P(p,q),M(1,n),则下列结论正确的是_(写出所有正确结论的序号) 0p1; 1p1; qn; q2kk四、解答题(5小题,每小题8分,共计40分)1、已知抛物线c:y=x22x3和直线l:y=xd。将抛物线c在x轴上方的部分沿x轴翻折180,其余部分保持不变,翻折后的

    6、图象与x轴下方的部分组成一个“M”型的新图象(即新函数m:y=|x22x3|的图象)。(1)当直线l与这个新图象有且只有一个公共点时,d= ;(2)当直线l与这个新图象有且只有三个公共点时,求d的值;(3)当直线l与这个新图象有且只有两个公共点时,求d的取值范围;(4)当直线l与这个新图象有四个公共点时,直接写出d的取值范围2、某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个(1)请直接写出y(个)与x(元)之间的函数关系

    7、式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?3、在平面直角坐标系中,设二次函数(m是实数)(1)当时,若点在该函数图象上,求n的值(2)小明说二次函数图象的顶点在直线上,你认为他的说法对吗?为什么?(3)已知点,都在该二次函数图象上,求证:4、问题情境:数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,ABC和DEC是两个全等的直角三角形纸片,其中ACBDCE90,BE30,ABDE4解决问题:(1)如图1,智慧小组将DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DEAC,请

    8、你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,当DEC绕点C继续旋转到如图2所示的位置时,连接AE、AD、BD,他们提出SBDCSAEC,请你帮他们验证这一结论是否正确,并说明理由5、解方程(组):(1)(2);(3)x(x7)8(7x). 线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、D【解析】【分析】直接根据“左加右减,上加下减”的原则进行解答即可【详解】由“左加右减”的原则可知,抛物线y=2x2向右平移2个单位所得抛物线是y=2(x2)2;由“上加下减”的原则可知,抛物线y=2(x2)2向下平移1个单位所得抛物线是y=2(x2)21.故选D.【

    9、考点】本题考查了二次函数图象与几何变换,解题的关键是掌握二次函数图象与几何变换.2、C【解析】【分析】先利用图2得出当P点位于B点时和当P点位于E点时的情况,得到AB和BE之间的关系以及,再利用勾股定理求解即可得到BE的值,最后利用中点定义得到BC的值【详解】解:由图2可知,当P点位于B点时,即,当P点位于E点时,即,则,,即,点为的中点,,故选:C【考点】本题考查了学生对函数图象的理解与应用,涉及到了勾股定理、解一元二次方程、中点的定义等内容,解决本题的关键是能正确理解题意,能从图象中提取相关信息,能利用勾股定理建立方程等,本题蕴含了数形结合的思想方法3、B【解析】【分析】利用轴对称图形和中

    10、心对称图形的定义逐项判断即可【详解】A是轴对称图形不是中心对称图形故A不符合题意B是轴对称图形也是中心对称图形故B符合题意C是轴对称图形但不是中心对称图形故C不符合题意D不是中心对称图形也不是轴对称图形故D不符合题意故选:B【考点】本题考查轴对称图形和中心对称图形的定义,根据选项灵活判断其图形是否符合题意是解本题的关 线 封 密 内 号学级年名姓 线 封 密 外 键4、B【解析】【分析】利用表中函数值的变换情况可判断抛物线的开口方向,则可对A进行判断;利用抛物线的对称性可得x1和x4的函数值相等,则可对B进行判断;利用x0和x3时函数值相等可得到抛物线的对称轴方程,则可对C进行判断;利用二次函

    11、数的性质则可对D进行判断【详解】解:二次函数值先由小变大,再由大变小,抛物线的开口向下,a0,故A正确;x1时,y3,x4时,y3,二次函数yax2+bx+c的函数值为2时,1x0或3x4,即方程ax2+bx+c2的负根在1与0之间,正根在3与4之间,故B错误;抛物线过点(0,1)和(3,1),抛物线的对称轴为直线x,1,2a+b0,故C正确;(,y2)关于直线x的对称点为(,y2),5,y1y2,故D正确;故选:B【考点】本题主要考查了一元二次方程根与系数的关系、抛物线与x轴的交点、图象法求一元二次方程的近似根、根的判别式、二次函数图象与系数的关系,准确计算是解题的关键5、D【解析】【分析】

    12、先根据一次函数的性质确定a0与a0两种情况分类讨论抛物线的顶点位置即可得出结论【详解】解:函数yax与yax2+a(a0)A. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是交y轴正半轴,故选项A不正确;B. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是在坐标原点上,故选项B不正确;C. 函数yax图形可得a0,则yax2+a(a0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴,故选项C不正确;D. 函数yax图形可得a0,则yax2+a(a0)开

    13、口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴正确,故选项D正确;故选D 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键二、多选题1、BD【解析】【分析】根据正比例函数图象和一次函数图象可得,然后分两种情况讨论:当时,;当时,即可求解【详解】解:根据题题得:当x=-1时,正比例函数与一次函数的图象相交,即, 当时,对于二次函数,当x=-1时,即,且,故B选项正确;当时,对于二次函数,当x=1时,即,且,故D选项正确;故选:BD【点睛】本题主要考查了一次函数的图象和性质,二次函数的图象和性质,

    14、熟练掌握一次函数的图象和性质,二次函数的图象和性质,利用分类讨论思想解答是解题的关键2、ACD【解析】【分析】根据图象左移加,右移减,图象上移加,下移减,可得答案【详解】解:A、yx21,先向上平移1个单位得到yx2,再向上平移1个单位可以得到yx21,故A符合题意;B、yx26x5(x3)24,右移3个单位,再上移5得到yx21,故B不符合题意;C、yx24x4(x2)2,先向右平移2个单位得到y(x22)2x2,再向上平移1个单位得到yx21,故C符合题意;D、yx28x17(x4)21,先向右平移2个单位得到y(x42)21,再向右平移1个单位得到y(x42-2)21x21,故D符合题意

    15、故选:ACD【点睛】本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,注意由目标函数图象到原函数图象方向正好相反3、BCD【解析】【分析】根据抛物线的对称轴,交点的个数,两个交点之间的距离,函数的属性,画函数草图进行判断即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解】抛物线y=a+bx+c中,4ab=0,对称轴x=-2,当x=-1时,y= ab+c0,设其对称点的横坐标为,解得= -3,(-3,a-b+c),(-1,a-b+c)都在x轴的上方,抛物线与x轴有两个不同的交点,且这两个交点之间的距离小于2,画草图如下,a0,b=

    16、4a0,0,c0,abc0,当x=1时,y= a+b+c0,0,4ac,A错误,B,C,D都是正确的,故选BCD【点睛】本题考查了二次函数的图像,性质,对称性,抛物线与x轴交点,根的判别式,熟练掌握二次函数的性质,根的判别式,掌握抛物线草图的画法是解题的关键4、BCD【解析】【分析】根据旋转的性质分别对每一个选项进行判断即可【详解】解:A、由旋转的性质可得,图形上对应点到旋转中心的距离相等,故此选项不符合题意;B、 由旋转的性质可得,图形上的每一点转动的角度相同,故此选项符合题意;C、由旋转的性质可得,图形上可能存在不动点(例如此点为旋转中心),故此选项符合题意;D、 由旋转的性质可得,图形上

    17、对应两点的连线与其对应两点的连线相等,故此选项符合题意;故选BCD【点睛】本题主要考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等5、BCD【解析】【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系、坐标系内直线的平移、利用配方法求二次三项式的最值即可一一判断【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:由图象可知,则,故A选项错误;由图象可知,直线与抛物线只有一个交点,则方程有两个相等的实根,故B选项正确;当时,抛物线由最大值,则,即,故C选项正确;设直线AB的表达式为,且A(1,3),B(4,0)

    18、在直线上,则,解得,即,由抛物线的对称轴为得,则,即,又 A(1,3),B(4,0)在抛物线上,则,解得,将直线向上平移与抛物线有一个交点时至,要求点P到直线AB的最大距离,即点P为直线与抛物线的交点,过点作于,轴,如图所示,由直线AB可得,为等腰直角三角形,又直线由直线平移得到,且轴,,是等腰直角三角形,由平移的性质可设直线的表达式为,当与抛物线有一个交点时,即,整理得,由于只有一个交点,则,解得,即直线AB向上平移了:,则,则,点P到直线AB的最大距离,故D选项正确,故选BCD【点睛】本题考查了二次函数的图象及性质、方程与二次函数的关系、函数与不等式的关系、平面直角坐标系 线 封 密 内

    19、号学级年名姓 线 封 密 外 内直线的平移,解题的关键学会利用函数图象解决问题,灵活运用相关知识解决问题,本题难点在于要求抛物线上的点到直线的最大距离即求直线平移至与抛物线有一个交点时交点到直线的距离三、填空题1、11【解析】【分析】根据题意列出二次函数关系式,根据二次函数的性质即可得到结论【详解】解:设销售单价定为元,每天所获利润为元,则,所以将销售定价定为11元时,才能使每天所获销售利润最大,故答案为11【考点】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质解答2、【解析】【分析】正方体有6个面,每一个面都是边长为x的正方形,这6个正方形的面积和

    20、就是该正方体的表面积【详解】解:正方体有6个面,每一个面都是边长为x的正方形,表面积故答案为:【考点】本题考查了列二次函数关系式,理解两个变量之间的关系是得出关系式的关键3、【解析】【分析】由旋转的性质可得BF=DE=2,D=ABF=90,在直角EFC中,由勾股定理可求解【详解】解:把ADE顺时针旋转90得ABF,BF=DE=2,D=ABF=90,ABC+ABF=180,点F,点B,点C共线,在直角EFC中,EC=6-2=4,CF=BC+BF=8根据勾股定理得:EF=,故答案为:【考点】本题考查了旋转的性质,正方形的性质,勾股定理,灵活运用这些性质解决问题是本题的关键4、4或2 线 封 密 内

    21、 号学级年名姓 线 封 密 外 【解析】【分析】根据抛物线的对称轴公式,即可建立关于m的等式,解方程求出m的值即可【详解】解:yx2+mx,抛物线开口向下,抛物线的对称轴为x,当1,即m2时,当x1时,函数最大值为3,1m3,解得:m4;当2,即m4时,当x2时,函数最大值为3,4+2m3,解得:m(舍去)当12,即2m4时,当x时,函数最大值为3,3,解得m2或m2(舍去),综上所述,m4或m2,故答案为:4或2【考点】本题考查了二次函数的最值,掌握抛物线的对称轴公式是解题的关键5、#【解析】【分析】先画出函数图像,判断出当时抛物线和反比例函数图象上的点的纵坐标的关系,确定抛物线右支与反比例

    22、函数图象的交点个数,再利用抛物线的对称性与反比例函数的图象与性质直接判断即可【详解】解: 抛物线,该抛物线对称轴为,顶点坐标为(1,),将该抛物线向上平移()个单位长度,则顶点坐标为(1,),当时,反比例函数图象上点的坐标为(1,),如图所示,抛物线平移后的顶点纵坐标即为m,反比例函数上横坐标为1的点的纵坐标即为s,m-s=,k,抛物线的右支与反比例函数图象只有一个交点,且该交点横坐标大于1;平移后的抛物线与双曲线y(x0)交于点P(p,q),M(1,n),点M为抛物线右支与反比例函数图象的交点,点P为抛物线左支与反比例函数图象的交点, 线 封 密 内 号学级年名姓 线 封 密 外 由于反比例

    23、函数的图像在第一象限内y随x的增大而减小,且抛物线关于直线对称1p1;q2kk正确;故答案为:【考点】本题考查了抛物线与反比例函数的图像与性质,解题关键是弄清楚这两个交点分别位于抛物线的左支和右支上,再利用抛物线的轴对称性和反比例函数图像的增减性进行判断四、解答题1、 (1)d=;(2)d=或d=(3)d或d; (4)d。【解析】【分析】(1)令x22x3=xd求解即可;(2)设抛物线c:y=x22x3与x轴交于点A(3,0),点B(1,0),则根据方程有两个相等的实根求出P的坐标,然后求解即可;(3)(4)根据(2)求出的P点坐标进行数形结合画图找出d的取值范围即可.【详解】解:(1)当直线

    24、l经过点A(3,0)时,d=;(2)设抛物线c:y=x22x3与x轴交于点A(3,0),点B(1,0), 直线l:y=xd与抛物线c:y=x22x3(3x1)相切于点P,则点P的横坐标恰好是方程xd=x22x3,即2x23x2d6=0(3x1)的两个相等实数根,解=98(2d6)=0得d=,点P的坐标为().当直线l经过点B(1,0)时,直线l与这个新图象有且只有三个公共点,解得d=; 当直线l经过点P()时,直线l与这个新图象有且只有三个公共点,解得d=; 综合、得:d=或d=(3)由平移直线l可得:直线l从经过点A(3,0)开始向下平移到直线l经过点P()的过程中,直线l与这个新图象有且只

    25、有两个公共点,可得d 线 封 密 内 号学级年名姓 线 封 密 外 直线l从经过点P()继续向下平移的过程中,直线l与这个新图象有且只有两个公共点,可得d;综合、得:d或d; (4)如图:当直线l经过点B(1,0)时,直线l与这个新图象有且只有三个公共点,解得d=;当直线l继续向下平移的过程中经过点P(),直线l与这个新图象有且只有三个公共点,可得d=;要使直线l与这个新图象有四个公共点则d的取值范围是d.【点睛】本题考查的是二次函数综合运用,关键是通过数形变换,确定变换后图形与直线的位置关系2、(1)y=-2x+220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;

    26、(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元【解析】【分析】(1)根据题意中销售量y(个)与售价x(元)之间的关系即可得到结论;(2)根据题意列出方程(-2x+220)(x-40)=2400,解方程即可求解;(3)设每星期利润为w元,构建二次函数模型,利用二次函数性质即可解决问题【详解】(1)由题意可得,y=100-2(x-60)=-2x+220;(2)由题意可得,(-2x+220)(x-40)=2400,解得,当销售单价是70元或80元时,该网店每星期的销售利润是2400元答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元(3)设该网店每星期

    27、的销售利润为w元,由题意可得w=(-2x+220)(x-40)=,当时,w有最大值,最大值为2450,当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元【点睛】本题考查了二次函数的应用,解题的关键是构建二次函数模型,利用二次函数的性质解决最值问题3、 (1)-7(2)对,理由见解析 线 封 密 内 号学级年名姓 线 封 密 外 (3)见解析【解析】【分析】(1)把m=2,点A(8,n)代入解析式即可求解;(2)由抛物线解析式,得顶点是,把x2m代入,求出y值与3-m比较,若相等则即可判断小明说法正确,

    28、否则说法错误;(3)由点P(a+1,c),Q(4m-5+a,c)的纵坐标相同,即可求得对称轴为直线x=a+2m-2,即可得出a+2m-2=2m,求得a=2,得到P(3,c),代入解析式即可得到 ,根据二次函数的性质即可证得结论(1)解:当m2时,A(8,n)在函数图象上,(2)解:由题意得,顶点是当x2m时,顶点在直线上(3)证明:P(a+1,c),Q(4m-5+a,c)都在二次函数的图象上对称轴是直线a+2m-22m ,a2,P(3,c),把P(3,c)代入抛物线解析式,得,-20,c有最大值为,c【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,熟练掌

    29、握二次函数的性质是解题的关键4、(1)证明见解析;(2)正确,理由见解析【解析】【分析】(1)如图1中,根据旋转的性质可得ACCD,然后求出ACD是等边三角形,根据等边三角形的性质可得ACD60,然后根据内错角相等,两直线平行进行解答;(2)如图2中,作DMBC于M,ANEC交EC的延长线于N根据旋转的性质可得BCCE,ACCD,再求出ACNDCM,然后利用“角角边”证明ACN和DCM全等,根据全等三角形对应边相等可得ANDM,然后利用等底等高的三角形的面积相等证明【详解】解:(1)如图1中,DEC绕点C旋转点D恰好落在AB边上,ACCD,BAC90B903060, 线 封 密 内 号学级年名

    30、姓 线 封 密 外 ACD是等边三角形,ACD60,又CDEBAC60,ACDCDE,DEAC;(2)结论正确,理由如下:如图2中,作DMBC于M,ANEC交EC的延长线于NDEC是由ABC绕点C旋转得到,BCCE,ACCD,ACNBCN90,DCMBCN1809090,ACNDCM,在ACN和DCM中,ACNDCM(AAS),ANDM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即SBDCSAEC【点睛】本题属于几何变换综合题,主要考查了全等三角形的判定与性质,等边三角形的判定与性质,旋转的性质的综合应用,添加恰当辅助线构造全等三角形是解题的关键5、 (1)(2)x(3)x

    31、17,x28【解析】【分析】(1)根据代入消元法,可得方程组的解;(2)根据等式的性质,化为整式方程,根据解整式方程,可得答案;(3)先移项,再提公因式,再求解即可(1)由,得y3x4将代入,得x2(3x4)3,解得x1,将x1代入,解得y1. 线 封 密 内 号学级年名姓 线 封 密 外 所以原方程组的解为;(2);解:方程两边都乘(x1)(x1),得(x1)23(x1)(x1),解得x.经检验,x是原方程的解(3)x(x7)8(7x).解:原方程可变形为x(x7)8(x7)0,(x7)(x8)0.x70,或x80.x17,x28.【点睛】本题考查了解二元一次方程组、分式方程及一元二次方程,利用等式的性质得出整式方程是解题关键,要检验分时方程的根

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年综合复习人教版九年级数学上册期中考试题 B卷(详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-646736.html
    相关资源 更多
  • 专题08 补全对话七选五(近年中考真题)-2024年中考英语逆袭冲刺名校模拟真题速递(天津专用).docx专题08 补全对话七选五(近年中考真题)-2024年中考英语逆袭冲刺名校模拟真题速递(天津专用).docx
  • 专题08 补全对话-备战2022中考英语全国名校最新模拟试题分类汇编.docx专题08 补全对话-备战2022中考英语全国名校最新模拟试题分类汇编.docx
  • 专题08 补全对话-备战2022中考英语全国名校最新模拟试题分类汇编(1).docx专题08 补全对话-备战2022中考英语全国名校最新模拟试题分类汇编(1).docx
  • 专题08 自测section 15---16-2021高考英语3500考纲词汇自测.docx专题08 自测section 15---16-2021高考英语3500考纲词汇自测.docx
  • 专题08 自我认识与提升-2024年高考英语一轮复习主题词汇.docx专题08 自我认识与提升-2024年高考英语一轮复习主题词汇.docx
  • 专题08 绿色植物的蒸腾作用测试(解析版).docx专题08 绿色植物的蒸腾作用测试(解析版).docx
  • 专题08 绿色植物的呼吸作用(习题精练)(全国通用)(解析版).docx专题08 绿色植物的呼吸作用(习题精练)(全国通用)(解析版).docx
  • 专题08 绿色植物的呼吸作用(习题精练)(全国通用)(原卷版).docx专题08 绿色植物的呼吸作用(习题精练)(全国通用)(原卷版).docx
  • 专题08 绿色植物是生物圈中有机物的制造者(考题猜想)(原卷版).docx专题08 绿色植物是生物圈中有机物的制造者(考题猜想)(原卷版).docx
  • 专题08 绿色植物是生物圈中有机物的制造者(知识清单)- 2023-2024学年七年级生物上学期期末考点大串讲(人教版).docx专题08 绿色植物是生物圈中有机物的制造者(知识清单)- 2023-2024学年七年级生物上学期期末考点大串讲(人教版).docx
  • 专题08 细胞呼吸(精练)(原卷版).docx专题08 细胞呼吸(精练)(原卷版).docx
  • 专题08 答题规范有模板-备战2022年中考化学必背手册(南京专用).docx专题08 答题规范有模板-备战2022年中考化学必背手册(南京专用).docx
  • 专题08 等高线问题(解析版).docx专题08 等高线问题(解析版).docx
  • 专题08 等高线问题(原卷版).docx专题08 等高线问题(原卷版).docx
  • 专题08 碳和碳的氧化物(解析版).docx专题08 碳和碳的氧化物(解析版).docx
  • 专题08 碳和碳的氧化物(原卷版).docx专题08 碳和碳的氧化物(原卷版).docx
  • 专题08 短文选词填空-冲刺2022中考英语热点题型考前押题(四川成都专用).docx专题08 短文选词填空-冲刺2022中考英语热点题型考前押题(四川成都专用).docx
  • 专题08 短文填空精练精析20篇(最新各地名校真题)-2021-2022学年七年级英语下学期期中复习挑战满分百题斩(外研版).docx专题08 短文填空精练精析20篇(最新各地名校真题)-2021-2022学年七年级英语下学期期中复习挑战满分百题斩(外研版).docx
  • 专题08 相似三角形性质和判定的应用(教师版)备战2020年中考几何压轴题分类导练学霸冲冲冲shop348121278.taobao.com.docx专题08 相似三角形性质和判定的应用(教师版)备战2020年中考几何压轴题分类导练学霸冲冲冲shop348121278.taobao.com.docx
  • 专题08 相似三角形性质和判定的应用(学生版)备战2020年中考几何压轴题分类导练学霸冲冲冲shop348121278.taobao.com.docx专题08 相似三角形性质和判定的应用(学生版)备战2020年中考几何压轴题分类导练学霸冲冲冲shop348121278.taobao.com.docx
  • 专题08 盐与化肥(考点精讲word版)-【满分之路】备战2022年中考化学一轮复习精讲精练(全国通用)(解析版).docx专题08 盐与化肥(考点精讲word版)-【满分之路】备战2022年中考化学一轮复习精讲精练(全国通用)(解析版).docx
  • 专题08 盐与化肥(考点精讲word版)-【满分之路】备战2022年中考化学一轮复习精讲精练(全国通用)(原卷版).docx专题08 盐与化肥(考点精讲word版)-【满分之路】备战2022年中考化学一轮复习精讲精练(全国通用)(原卷版).docx
  • 专题08 电能与光能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (解析版).docx专题08 电能与光能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (解析版).docx
  • 专题08 电能与光能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (原卷版).docx专题08 电能与光能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (原卷版).docx
  • 专题08 电化学及其应用-2022年高考真题和模拟题化学分类汇编(解析版).docx专题08 电化学及其应用-2022年高考真题和模拟题化学分类汇编(解析版).docx
  • 专题08 电功率之额定功率、实际功率、最值问题(解析版).docx专题08 电功率之额定功率、实际功率、最值问题(解析版).docx
  • 专题08 电功率之额定功率、实际功率、最值问题(原卷版).docx专题08 电功率之额定功率、实际功率、最值问题(原卷版).docx
  • 专题08 用所给词的适当形式填空精练100道(期末真题精选)八年级英语(牛津译林版)(解析版).docx专题08 用所给词的适当形式填空精练100道(期末真题精选)八年级英语(牛津译林版)(解析版).docx
  • 专题08 用所给词的适当形式填空精练100道(期末真题精选)八年级英语(牛津译林版)(原卷版).docx专题08 用所给词的适当形式填空精练100道(期末真题精选)八年级英语(牛津译林版)(原卷版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1