分享
分享赚钱 收藏 举报 版权申诉 / 19

类型2022年京改版八年级数学上册期中测试试题 卷(Ⅲ)(含答案详解).docx

  • 上传人:a****
  • 文档编号:693176
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:19
  • 大小:356.44KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年京改版八年级数学上册期中测试试题 卷含答案详解 2022 改版 八年 级数 上册 期中 测试 试题 答案 详解
    资源描述:

    1、京改版八年级数学上册期中测试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、把四张形状大小完全相同的小长方形卡片(如图,卡片的长为,宽为)不重叠地放在一个底面为长方形(长为,宽为4)的盒子底部(

    2、如图),盒子底面未被卡片覆盖的部分用阴影表示,则图中两块阴影部分的周长和是()ABCD2、方程的解是()Ax2Bx1Cx1Dx33、一支部队排成a米长队行军,在队尾的战士要与最前面的团长联系,他用t1分钟追上了团长、为了回到队尾,他在追上团长的地方等待了t2分钟如果他从最前头跑步回到队尾,那么他需要的时间是()A分钟B分钟C分钟D分钟4、化简的结果是()A5BCD5、化简的结果为()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列结论不正确的是()A64的立方根是B没有立方根C立方根等于本身的数是0D= 2、下列说法不正确的是()A二次根式有意义的条件是x0B二次根式有意义的条件是

    3、x3C若a为实数,则()2D若y,则y0,x23、下列关于的方程,不是分式方程的是()ABCD4、下列各数中是无理数有()A1.01001000100001BCD5、二次根式除法可以这样解:如7+4象这样通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫分母有理化,判断下列选项正确的是()若a是的小数部分,则的值为;比较两个二次根式的大小;计算1;对于式子,对它的分子分母同时乘以或或72,均不能对其分母有理化;设实数x,y满足(x+)(y+)2022,则(x+y)2+20222022;若x,y,且19x2+123xy+19y21985,则正整数n2,ABCD第卷(非选择题

    4、65分)三、填空题(5小题,每小题5分,共计25分)1、化简:(1_2、7是_的算术平方根3、已知为实数,规定运算:,按上述方法计算:当时,的值等于_4、计算:_5、已知,当分别取1,2,3,2020时,所对应值的总和是_四、解答题(5小题,每小题8分,共计40分)1、(1)计算:;(2)因式分解:.2、解方程:(1)(2)3、计算:(1)3-9+3;(2)()+();(3)+6-2x;(4)+(-1)0.4、如果解关于的方程会产生增根,求的值.5、观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,按照以上规律,解决下列问题:(1)写出第6个等式:_;(2)写

    5、出你猜想的第n个等式:_(用含n的等式表示),并证明-参考答案-一、单选题1、B【解析】【分析】分别求出较大阴影的周长和较小阴影的周长,再相加整理,即得出答案【详解】较大阴影的周长为:,较小阴影的周长为:,两块阴影部分的周长和为:= , 故两块阴影部分的周长和为16故选B【考点】本题考查了图形周长,整式加减的应用,利用数形结合的思想求出较大阴影的周长和较小阴影的周长是解题的关键2、D【解析】【分析】根据解分式方程的方法求解,即可得到答案【详解】 经检验,当时,与均不等于0方程的解是:x3故选:D【考点】本题考查了解分式方程的知识点;解题的关键是熟练掌握分式方程的解法,从而完成求解3、C【解析】

    6、【分析】根据题意得到队伍的速度为,队尾战士的速度为,可以得到他从最前头跑步回到队尾,那么他需要的时间是,化简即可求解【详解】解:由题意得:分钟故选:C【考点】本题考查了根据题意列分式计算,理解题意正确列出分式是解题关键4、A【解析】【分析】先进行二次根式乘法,再合并同类二次根式即可【详解】解: ,故选择A【考点】本题考查二次根式乘除加减混合运算,掌握二次根式混合运算法则是解题关键5、B【解析】【分析】根据同分母的分式减法法则进行化简即可得到结果【详解】解:,故选:【考点】此题主要考查同分母分式的减法,熟练掌握运算法则是解答此题的关键二、多选题1、ABC【解析】【分析】根据立方根的定义解答即可【

    7、详解】解:A、64的立方根是4,原说法错误,故本选项符合题意;B、有立方根,是,原说法错误,故本选项符合题意;C、立方根等于它本身的数是0、1、-1,原说法错误,故本选项符合题意;D、,故选项D不符合题意,故选ABC【考点】本题考查了立方根解题的关键是掌握立方根的定义的运用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根2、ABC【解析】【分析】根据二次根式有意义的条件和分式有意义的条件逐个判断即可【详解】解:A、要使有意义,必须x-10,即x1,故本选项符合题意;B、要使有意义,必须x-30,即x3,故本选项符合题意;C、当a0时,()2才和相等,当a0时,无意义,

    8、故本选项符合题意;D、要使y=成立,必须y0,x-2,故本选不项符合题意;故选ABC【考点】本题考查了二次根式有意义的条件和分式有意义的条件,能熟记二次根式有意义的条件和分式有意义的条件是解此题的关键3、ABC【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断【详解】解:A、分母中不含未知数,不是分式方程,符合题意;B、分母中不含未知数,不是分式方程,符合题意;C、分母中不含未知数,不是分式方程,符合题意;D、分母中含未知数,是分式方程,不符合题意;故选:ABC【考点】判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母

    9、不行,必须是表示未知数的字母)4、BC【解析】【分析】根据无理数的定义逐项判断即可【详解】解:根据无理数定义判断知:为无理数,故选:BC【考点】此题考查无理数的定义:无限不循环小数和经开方化简后含根号的数,根据定义判断即可,难度一般5、CD【解析】【分析】根据分母有理化化简各小题即可【详解】解:,a是的小数部分, ,故不正确;, ,故正确;= =,故错误;结果中均含有二次根式,对于式子,对它的分子分母同时乘以或或72,均不能对其分母有理化,故正确;(x+)(y+)2022,x+ x+,同理,y+得,x+y+ (x+y)2+20222022;故正确; 把代入19x2+123xy+19y21985

    10、,得19x2+123+19y21985,化简得: 且 ,故正确故选CD【考点】本题考查的是二次根式的化简求值,掌握分母有理化、二次根式的乘法法则是解题的关键三、填空题1、【解析】【分析】原式括号中两项通分,同时利用除法法则变形,约分即可得到结果【详解】(1+)=,故答案为.【考点】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法2、49【解析】【分析】根据算术平方根的定义即可解答.【详解】解:因为=7,所以7是49的算术平方根.故答案为:49【考点】本题主要考查的是算术平方根,属于基础题,要求学生认真读题,熟记概念.3、【解析】【分析】将,代入进行计算,可知数列3个为一次循

    11、环,按此规律即可进行求解【详解】解:由题意可知,时,其规律是3个为一次循环,20223=674,故答案为:【考点】本题考查了实数的运算,规律型:数字变化类,把代入进行计算,找到规律是解题的关键4、2【解析】【分析】先根据负整数指数幂及零指数幂的意义分别化简,再进行减法运算即可【详解】原式=3-1=2,故答案为:2【考点】本题考查负整数指数幂和零指数幂的意义,理解定义是解题关键5、【解析】【分析】先化简二次根式求出y的表达式,再将x的取值依次代入,然后求和即可得【详解】当时,当时,则所求的总和为故答案为:【考点】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键四

    12、、解答题1、(1);(2)【解析】【分析】(1)原式利用零指数幂、负整数指数幂的性质计算即可求出值;(2)原式利用平方差公式分解即可【详解】解:(1)原式;(2)原式;【考点】此题考查了实数运算与因式分解运用公式法,熟练掌握因式分解的方法是解本题的关键2、(1)x=;(2)x=【解析】【分析】各分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:(1),去分母,得3x=2x+3(x+1),解得:x=,经检验,x=是原分式方程的解(2),去分母,得2-(x+2)=3(x-1),解得:x=,经检验,x=是原分式方程的解【考点】此题考查了解分式方程,解分式

    13、方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根3、(1)15;(2)6;(3)3;(4)+1.【解析】【分析】根据二次根式的公式化简即可.【详解】(1)原式=12-3+6=(12-3+6)=15;(2)原式=4+2+2=6;(3)原式=2+3-2=3;(4)原式=3+1=+1.【考点】本题考查二次根式的计算,注意合并同类二次根式.4、k=2【解析】【分析】首先根据分式方程的解法求出方程的解,然后根据增根求出k的值【详解】两边同时乘以(x2)可得:x=2(x2)+k, 解得:x=4k,方程有增根,x=2, 即4k=2,解得:k=2【考点】本题主要考查的是分式方程有增根的情况,属于基础题型解决这种问题时,首先我们将k看作已知数,求出方程的解,然后根据解为增根得出答案5、(1);(2),证明见解析【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边=1,右边=1,左边=右边,原等式成立,第n个等式为:,故答案为【考点】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年京改版八年级数学上册期中测试试题 卷(Ⅲ)(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-693176.html
    相关资源 更多
  • 中考生物专题练习单细胞生物(含解析).docx中考生物专题练习单细胞生物(含解析).docx
  • 中考生物 边角知识点复习4.docx中考生物 边角知识点复习4.docx
  • 中考生物 边角知识点复习2.docx中考生物 边角知识点复习2.docx
  • 中考生物 3.5 第三单元 第五章 人体生命活动的调节复习导学案(无答案) 济南版.docx中考生物 3.5 第三单元 第五章 人体生命活动的调节复习导学案(无答案) 济南版.docx
  • 中考生物 3.3 第三单元 第三章 人体内的物质运输复习导学案(无答案) 济南版.docx中考生物 3.3 第三单元 第三章 人体内的物质运输复习导学案(无答案) 济南版.docx
  • 中考特训(四)溶解度曲线的综合运用.docx中考特训(四)溶解度曲线的综合运用.docx
  • 中考特训(四)中和反应的实验探究.docx中考特训(四)中和反应的实验探究.docx
  • 中考特训(四)中和反应的实验探究.docx中考特训(四)中和反应的实验探究.docx
  • 中考特训(十)实验方案的设计与评价.docx中考特训(十)实验方案的设计与评价.docx
  • 中考特训(十一)化学物质的分类.docx中考特训(十一)化学物质的分类.docx
  • 中考特训(六)物质的检验、鉴别与除杂.docx中考特训(六)物质的检验、鉴别与除杂.docx
  • 中考特训(六)中和反应的探究.docx中考特训(六)中和反应的探究.docx
  • 中考特训(六)物质的检验、鉴别与除杂.docx中考特训(六)物质的检验、鉴别与除杂.docx
  • 中考特训(六)中和反应的探究.docx中考特训(六)中和反应的探究.docx
  • 中考特训(八)有机化合物成分的确定.docx中考特训(八)有机化合物成分的确定.docx
  • 中考特训(八)单质、氧化物、酸、碱、盐的相互反应.docx中考特训(八)单质、氧化物、酸、碱、盐的相互反应.docx
  • 中考特训(八)有机化合物成分的确定.docx中考特训(八)有机化合物成分的确定.docx
  • 中考特训(五)碱变质的探究.docx中考特训(五)碱变质的探究.docx
  • 中考特训(五)单质、氧化物、酸、碱、盐的相互反应.docx中考特训(五)单质、氧化物、酸、碱、盐的相互反应.docx
  • 中考特训(二)溶解度曲线的综合运用.docx中考特训(二)溶解度曲线的综合运用.docx
  • 中考特训(三)有关溶质质量分数的综合计算.docx中考特训(三)有关溶质质量分数的综合计算.docx
  • 中考特训(三)有关溶质质量分数的综合计算.docx中考特训(三)有关溶质质量分数的综合计算.docx
  • 中考特训(七)实验方案的设计与评价.docx中考特训(七)实验方案的设计与评价.docx
  • 中考特训(七)复分解反应发生条件的判断和应用.docx中考特训(七)复分解反应发生条件的判断和应用.docx
  • 中考特训(一)金属活动顺序的应用.docx中考特训(一)金属活动顺序的应用.docx
  • 中考特训(一)金属活动性顺序的应用.docx中考特训(一)金属活动性顺序的应用.docx
  • 中考特训(一)金属活动性顺序的应用.docx中考特训(一)金属活动性顺序的应用.docx
  • 中考特训(四) 投影与视图.docx中考特训(四) 投影与视图.docx
  • 中考特训(二) 相似.docx中考特训(二) 相似.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1