分享
分享赚钱 收藏 举报 版权申诉 / 18

类型2022年京改版八年级数学上册期中综合测评试题 卷(Ⅱ)(详解版).docx

  • 上传人:a****
  • 文档编号:693184
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:18
  • 大小:326.79KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年京改版八年级数学上册期中综合测评试题 卷详解版 2022 改版 八年 级数 上册 期中 综合 测评 试题 详解
    资源描述:

    1、京改版八年级数学上册期中综合测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列计算正确的是()ABCD2、要使有意义,则x的取值范围为()Ax100Bx2Cx2Dx23、下列说法正确的有(

    2、)无限小数不一定是无理数;无理数一定是无限小数;带根号的数不一定是无理数;不带根号的数一定是有理数ABCD4、若是二元一次方程组的解,则x2y的算术平方根为()A3B3C D 5、若一个正数的两个平方根分别为2a与3a6,则这个正数为()A2B4C6D36二、多选题(5小题,每小题4分,共计20分)1、下列计算不正确的是()A(1)01BCD用科学记数法表示0.00001081.081052、下列各式中,无论x取何值,分式都没有意义的是()ABCD3、如果解关于x的分式方程时出现增根,则m的值可能为()ABCD14、下列等式不成立的是()ABCD5、如果方程有增根,则它的增根可能为()Ax=1

    3、Bx=-1Cx=0Dx=3第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若,则_2、已知=+,则实数A=_3、若将三个数,表示在数轴上,则被如图所示的墨迹覆盖的数是_.4、请写一个比小的无理数.答:_5、已知数a、b、c在数粒上的位置如图所示,化简的结果是_四、解答题(5小题,每小题8分,共计40分)1、把下列各式填入相应的括号内:2a,整式集合:;分式集合:2、计算:(1);(2);(3);(4)3、计算:(1)(2)4、先化简,再求值:-,其中a=(3-)0+-.5、若分式有意义,求x的取值范围.-参考答案-一、单选题1、D【解析】【分析】根据二次根式的乘法运算法

    4、则对A、D选项进行判断,根据算术平方根的意义对B选项进行判断,根据积的乘方对C选项进行判断【详解】解: ,故A选项错误,D选项正确;,故B选项错误;,故C选项错误故选:D【考点】本题考查二次根式的运算及积的乘方熟练掌握各运算法则是解题关键2、C【解析】【分析】根据二次根式有意义的条件可知,解不等式即可【详解】有意义,解得:故选C【考点】本题考查了二次根式有意义的条件,理解二次根式有意义的条件是解题的关键3、A【解析】【分析】根据无理数是无限不循环小数进行判断即可【详解】解:无限小数不一定都是无理数,如是有理数,故正确;无理数一定是无限小数,故正确;带根号的数不一定都是无理数,如是有理数,故正确

    5、;不带根号的数不一定是有理数,如是无理数,故错误;故选:A【考点】本题考查的是实数的概念,掌握实数的分类、正确区分有理数和无理数是解题的关键,注意无理数是无限不循环小数4、C【解析】【分析】将代入二元一次方程组中解出和的值,再计算的算术平方根即可【详解】解:将代入二元一次方程中,得到:,得: 所有方程组的解是: 的算术平方根为,故选:C【考点】本题考查了二元一次方程组的解法,算术平方根的概念,解题的关键是熟练掌握二元一次方程组的解法5、D【解析】【分析】根据平方根的定义可得一个关于的一元一次方程,解方程求出的值,再计算有理数的乘方即可得【详解】解:由题意得:,解得,则这个正数为,故选:D【考点

    6、】本题考查了平方根、一元一次方程的应用,熟练掌握平方根的定义是解题关键二、多选题1、ABCD【解析】【分析】根据负整数指数幂和科学计算法的计算方法进行求解判断即可【详解】解:A、,故此选项符合题意;B、,故此选项符合题意;C、,故此选项符合题意;D、用科学记数法表示,故此选项符合题意;故选ABCD【考点】本题主要考查了负整数指数幂和科学计算法,解题的关键在于能够熟练掌握相关计算法则2、BCD【解析】【分析】根据分式有意义的条件分析四个选项哪个方式分母不为零,进而可得答案【详解】A、 , ,则,无论 取何值,分式都有意义,故此选项正确;B、当时,分式分母=0,分式无意义,故此选项错误;C、当时,

    7、分式分母=0,分式无意义,故此选项错误;D、当时,分式分母=0,分式无意义,故此选项错误故选BCD【考点】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零3、AB【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值【详解】解:分式方程,去分母整理,得,;原分式方程有增根,则或,或;故选:AB【考点】此题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值4、ABC【解析】【分析】根据二次根式的性质以及二次根式的乘除法法则进行判断即可【详解】解:A、 ,当,时,故

    8、此选项符合题意;B、 当,时,和没有意义,故此选项符合题意;C、当,时,和没有意义,故此选项符合题意;D、,要使有意义,则,故此选项不符合题意;故选ABC【考点】此题主要考查了二次根式的性质以及二次根式的乘除法,熟练掌握运算法则是解答此题的关键5、AB【解析】【分析】根据分式方程的增根的定义即可得解【详解】解:由题意可得:方程的最简公分母为(x1)(x1),若原分式方程要有增根,则(x1)(x1)0,则x1或x1,故选:AB【考点】本题考查了分式方程的增根,分式方程的增根就是使方程的最简公分母等于0的未知数的值三、填空题1、1或-2【解析】【分析】根据除0外的数的任何次幂都是1及1的任何次幂都

    9、是1,所以当,和时解得或即可得解此题【详解】解:,可分以下三种情况讨论:时,且为偶数时,时, 时,1为奇数,的情况不存在,当时,的情况存在,综上所述,符合条件的a的值为:1,-2,故答案为:1或-2【考点】本题考查了乘方性质的应用,解题的关键是了解乘方是1的数的所有可能情况2、1【解析】【详解】【分析】先计算出,再根据已知等式得出A、B的方程组,解之可得【详解】,=+,解得:,故答案为1【考点】本题考查了分式的加减法运算,熟练掌握分式加减运算的法则、得出关于A、B的方程组是解本题的关键.3、【解析】【分析】根据数轴确定出被覆盖的数的范围,再根据无理数的大小确定出答案即可【详解】因为,所以,所以

    10、,故不在此范围;因为,所以,故在此范围;因为,所以,故不在此范围.所以被墨迹覆盖的数是.故答案为.【考点】此题考查估算无理数的大小,实数与数轴,解题关键在于估算出取值范围.4、(答案不唯一)【解析】【分析】根据无理数的定义填空即可.【详解】解:比小的无理数如:(答案不唯一),故答案为(答案不唯一).【考点】本题考查了无理数的定义及比较无理数大小,比较基础5、0【解析】【分析】首先根据数轴可以得到ca0b,然后则根据绝对值的性质,以及算术平方根的性质即可化简【详解】解:根据数轴可以得到:ca0b,则c-b0,a+c0,则原式=-a+(a+c)+(b-c)-b=-a+a+c+b-c-b=0故答案是

    11、:0【考点】本题考查了二次根式的性质、整式的加减、以及绝对值的性质,解答此题,要弄清四、解答题1、整式集合: 2a,;分式集合: ,【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式【详解】2a,的分母没有字母是整式,式子的分母含有字母是分式故答案为:整式集合: 2a,;分式集合: ,【考点】本题考查了整式和分式的定义,熟练掌握相关概念是解题关键,注意:不是字母,是常数2、(1)2;(2);(3);(4)1【解析】【分析】(1)根据同分母分式的加减和整式的加减计算法则进行求解即可;(2)根据同分母分式的加减和整式的加减计算法则进行求解即可;(3

    12、)根据异分母分式的加减和整式的加减计算法则进行求解即可;(4)根据同分母分式的加减和整式的加减计算法则进行求解即可【详解】解:(1);(2);(3);(4)【考点】本题主要考查了分式的加减和整式的加减,解题的关键在于能够熟练掌握相关计算法则3、(1)9;(2)【解析】【分析】(1)直接利用完全平方公式以及多项式乘多项式运算法则计算得出答案;(2)直接利用二次根式的乘除运算法则计算得出答案【详解】解:(1);(2)【考点】本题考查了二次根式的性质与化简以及整式的混合运算,正确化简二次根式是解题的关键4、,;.【解析】【分析】根据分式的运算法则及混合运算顺序先把分式化为最简分式,再求得a的值,代入即可求解.【详解】解:原式=-=-=-=.a=(3-)0+-=1+3-1=3,原式=-.【考点】本题考查了分式的化简求值,把分式化为最简分式及正确求得a的值是解决问题的关键.5、【解析】【分析】先把除法化为乘法,再根据分式有意义的条件即可得到结果【详解】,x+20且x+40且x+30,解得:x2、3、4【考点】本题主要考查了分式有意义的条件,关键是注意分式所有的分母部分均不能为0,分式才有意义

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年京改版八年级数学上册期中综合测评试题 卷(Ⅱ)(详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-693184.html
    相关资源 更多
  • 专题3 第四单元 第1课时.docx专题3 第四单元 第1课时.docx
  • 专题3 第二单元 第1课时.docx专题3 第二单元 第1课时.docx
  • 专题3 第三单元.docx专题3 第三单元.docx
  • 专题3 第三单元 第1课时.docx专题3 第三单元 第1课时.docx
  • 专题3 第一单元.docx专题3 第一单元.docx
  • 专题3 第一单元 第2课时.docx专题3 第一单元 第2课时.docx
  • 专题3 第一单元 第1课时.docx专题3 第一单元 第1课时.docx
  • 专题3 第14课时 带电粒子在复合场中的运动.docx专题3 第14课时 带电粒子在复合场中的运动.docx
  • 专题3 第11课时 电场.docx专题3 第11课时 电场.docx
  • 专题3 秦汉时期 2023年中考历史一轮复习专题训练(湖南专用).docx专题3 秦汉时期 2023年中考历史一轮复习专题训练(湖南专用).docx
  • 专题3 石油化工的基础物质——烃-【知识清单】2022-2023学年高二化学单元复习知识清单(苏教版2019选择性必修3).docx专题3 石油化工的基础物质——烃-【知识清单】2022-2023学年高二化学单元复习知识清单(苏教版2019选择性必修3).docx
  • 专题3 电学(解析版).docx专题3 电学(解析版).docx
  • 专题3 电学(原卷版).docx专题3 电学(原卷版).docx
  • 专题3 物态变化 物态变化章末综合检测(教师版).docx专题3 物态变化 物态变化章末综合检测(教师版).docx
  • 专题3 物态变化 物态变化章末综合检测(学生版).docx专题3 物态变化 物态变化章末综合检测(学生版).docx
  • 专题3 段落分析类-初中生一周轻松学记叙文阅读.docx专题3 段落分析类-初中生一周轻松学记叙文阅读.docx
  • 专题3 概率进一步认识(能力提升)(解析版).docx专题3 概率进一步认识(能力提升)(解析版).docx
  • 专题3 概率进一步认识(能力提升)(原卷版).docx专题3 概率进一步认识(能力提升)(原卷版).docx
  • 专题3 概率进一步认识(知识解读)(北师大版).docx专题3 概率进一步认识(知识解读)(北师大版).docx
  • 专题3 概率进一步认识(知识解读)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx专题3 概率进一步认识(知识解读)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx
  • 专题3 概率进一步认识(专项训练)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx专题3 概率进一步认识(专项训练)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx
  • 专题3 机械能与曲线运动的综合问题-2020-2021学年高一物理人教版必修二暑期训练资料.docx专题3 机械能与曲线运动的综合问题-2020-2021学年高一物理人教版必修二暑期训练资料.docx
  • 专题3 有理数的简便计算-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx专题3 有理数的简便计算-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx
  • 专题3 整式 2023年中考数学一轮复习专题训练(北京专用).docx专题3 整式 2023年中考数学一轮复习专题训练(北京专用).docx
  • 专题3 因式分解 安徽省2023年中考数学一轮复习专题训练.docx专题3 因式分解 安徽省2023年中考数学一轮复习专题训练.docx
  • 专题3 倍数和因数-小升初数学复习精编讲义(知识清单 经典例题 强化训练 名校冲刺).docx专题3 倍数和因数-小升初数学复习精编讲义(知识清单 经典例题 强化训练 名校冲刺).docx
  • 专题3 从海水中获得的化学物质-【知识清单】2022-2023学年高一化学上学期单元复习知识清单(苏教版2019必修第一册).docx专题3 从海水中获得的化学物质-【知识清单】2022-2023学年高一化学上学期单元复习知识清单(苏教版2019必修第一册).docx
  • 专题3 世界区域地图专项训练-2021高考地理名师常考地图重难点专项突破.docx专题3 世界区域地图专项训练-2021高考地理名师常考地图重难点专项突破.docx
  • 专题3除法-2023-2024学年四年级上册数学计算大通关(北师大版).docx专题3除法-2023-2024学年四年级上册数学计算大通关(北师大版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1