分享
分享赚钱 收藏 举报 版权申诉 / 24

类型2022年人教版九年级数学上册第二十四章圆专题训练练习题(含答案详解).docx

  • 上传人:a****
  • 文档编号:696144
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:24
  • 大小:476.37KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 年人教版 九年级 数学 上册 第二 十四 专题 训练 练习题 答案 详解
    资源描述:

    1、人教版九年级数学上册第二十四章圆专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为()ABCD2、在O中按如下步骤作图:(

    2、1)作O的直径AD;(2)以点D为圆心,DO长为半径画弧,交O于B,C两点;(3)连接DB,DC,AB,AC,BC根据以上作图过程及所作图形,下列四个结论中错误的是()AABD90BBADCBDCADBCDAC2CD3、如图,正三角形PMN的顶点分别是正六边形ABCDEF三边的中点,则三角形PMN与六边形ABCDEF的面积之比()A1:2B1:3C2:3D3:84、如图,在中,cm,cm是边上的一个动点,连接,过点作于,连接,在点变化的过程中,线段的最小值是()A1BC2D5、下列说法中,正确的是()A长度相等的弧是等弧B平分弦的直径垂直于弦,并且平分弦所对的两条弧C经过半径并且垂直于这条半径

    3、的直线是圆的切线D在同圆或等圆中90的圆周角所对的弦是这个圆的直径6、已知点在上则下列命题为真命题的是()A若半径平分弦则四边形是平行四边形B若四边形是平行四边形则C若则弦平分半径D若弦平分半径则半径平分弦7、如图,PA,PB是O的切线,A,B是切点,点C为O上一点,若ACB70,则P的度数为() A70B50C20D408、如图,O是RtABC的外接圆,ACB90,过点C作O的切线,交AB的延长线于点D设A,D,则()AB+90C2+90D+2909、已知O中最长的弦为8cm,则O的半径为()cmA2B4C8D1610、如图物体由两个圆锥组成,其主视图中,若上面圆锥的侧面积为1,则下面圆锥的

    4、侧面积为()A2BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,以点为圆心、为半径的圆交于点,则弧AD的度数为_度2、如图,在中,半径,是半径上一点,且,是上的两个动点,是的中点,则的长的最大值等于_3、如图,在一边长为的正六边形中,分别以点A,D为圆心,长为半径,作扇形,扇形,则图中阴影部分的面积为_(结果保留)4、若一个扇形的弧长是,面积是,则扇形的圆心角是_度5、如图,在射线AC上顺次截取,以为直径作交射线于、两点,则线段的长是_cm三、解答题(5小题,每小题10分,共计50分)1、如图,AB是O的直径,弦CDAB,垂足为E,如果AB10,CD8

    5、,求线段AE的长2、如图,OC为O的半径,弦ABOC于点D,OC10,CD4,求AB的长3、如图,AB、CD是O中两条互相垂直的弦,垂足为点E,且AECE,点F是BC的中点,延长FE交AD于点G,已知AE1,BE3,OE(1)求证:AEDCEB;(2)求证:FGAD;(3)若一条直线l到圆心O的距离d,试判断直线l是否是圆O的切线,并说明理由4、如图,正五边形内接于,为上的一点(点不与点重合),求的余角的度数5、下列每个正方形的边长为2,求下图中阴影部分的面积-参考答案-一、单选题1、A【解析】【分析】正六边形的面积加上六个小半圆的面积,再减去中间大圆的面积即可得到结果【详解】解:正六边形的面

    6、积为:,六个小半圆的面积为:,中间大圆的面积为:,所以阴影部分的面积为:,故选:A【考点】本题考查了正多边形与圆,圆的面积的计算,正六边形的面积的计算,正确的识别图形是解题的关键2、D【解析】【分析】根据作图过程可知:AD是O的直径,根据垂径定理即可判断A、B、C正确,再根据DCOD,可得AD2CD,进而可判断D选项【详解】解:根据作图过程可知:AD是O的直径,ABD90,A选项正确;BDCD,,BADCBD,B选项正确;根据垂径定理,得ADBC,C选项正确;DCOD,AD2CD,D选项错误故选:D【考点】本题考查作图-复杂作图、含30度角的直角三角形、垂径定理、圆周角定理,解决本题的关键是熟

    7、练掌握相关知识点3、D【解析】【分析】连接BE,设正六边形的边长为a,首先证明PMN是等边三角形,分别求出PMN,正六边形ABCDEF的面积即可【详解】解:连接BE,设正六边形的边长为a则AFa,BE2a,AFBE,APPB,FNNE,PN(AF+BE)1.5a,同理可得PMMN1.5a,PNPMMN,PMN是等边三角形,故选:D【考点】本题考查正多边形与圆,等边三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型4、A【解析】【分析】由AEC90知,点E在以AC为直径的M的上(不含点C、可含点N),从而得BE最短时,即为连接BM与M的交点(图中点E点),BE长度的最小

    8、值BEBMME【详解】如图,由题意知,在以为直径的的上(不含点、可含点,最短时,即为连接与的交点(图中点点),在中,则,长度的最小值,故选:【考点】本题主要考查了勾股定理,圆周角定理,三角形的三边关系等知识点,难度偏大,解题时,注意辅助线的作法5、D【解析】【分析】根据切线的判定,圆的知识,可得答案【详解】解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;D、在同圆或等圆中90的圆周角所对的弦是这个圆的直径,故D正确;故选D【考点】本题考查了切线的判定及圆

    9、的知识,利用圆的知识及切线的判定是解题关键6、B【解析】【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可【详解】A半径平分弦,OBAC,AB=BC,不能判断四边形OABC是平行四边形,假命题;B四边形是平行四边形,且OA=OC,四边形是菱形,OA=AB=OB,OABC,OAB是等边三角形,OAB=60,ABC=120,真命题;C,AOC=120,不能判断出弦平分半径,假命题;D只有当弦垂直平分半径时,半径平分弦,所以是假命题,故选:B【考点】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所

    10、学的知识进行推理证明命题的真假7、D【解析】【分析】首先连接OA,OB,由PA,PB为O的切线,根据切线的性质,即可得OAP=OBP=90,又由圆周角定理,可求得AOB的度数,继而可求得答案【详解】解:连接OA,OB,PA,PB为O的切线,OAP=OBP=90,ACB=70,AOB=2P=140,P=360-OAP-OBP-AOB=40故选:D【考点】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用8、C【解析】【分析】连接OC, 由BOC是AOC的外角,可得BOC2A2,由CD是O的切线,可求OCD90,可得D902即可【详解】连接OC,如图,O是RtABC的外接圆

    11、,ACB90,AB是直径,A,OA=OC,BOC是AOC的外角,A=ACO,BOC=A+ACO2A2,CD是O的切线,OCCD,OCD90,D90BOC902,2+90故选:C【考点】本题考查圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质,掌握圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质9、B【解析】【分析】O最长的弦就是直径从而不难求得半径的长【详解】解:O中最长的弦为8cm,即直径为8cm,O的半径为4cm故选:B.【考点】本题考查弦,直径等知识,记住圆中的最长的弦就是直径是解题的关键10、D【解析】【分析】先证明ABD为等腰直角三角形得到ABD45,

    12、BDAB,再证明CBD为等边三角形得到BCBDAB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积【详解】A90,ABAD,ABD为等腰直角三角形,ABD45,BDAB,ABC105,CBD60,而CBCD,CBD为等边三角形,BCBDAB,上面圆锥与下面圆锥的底面相同,上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,下面圆锥的侧面积1故选D【考点】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长也考查了等腰直角三角形和等边三角形的性质二、填空题1、【解析】【分析】由

    13、三角形内角和得A=90B=65再由AC=CD,ACD度数可求,可解【详解】连接CDACB=90,B=25,A=90B=65CA=CD,A=CDA=65,ACD=1802A=50,弧AD的度数是50度【考点】本题考查了直角三角形,三角形内角和定理和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半2、【解析】【分析】当点F与点D运动至共线时,OF长度最大,此时F是AB的中点,则OFAB,设OF为x,则DFx4,在RtBOF中,利用勾股定理进行求解即可【详解】当点F与点D运动至共线时,OF长度最大,如图所示,F是AB的中点,OCAB,设OF为x,则DFx4,AB

    14、D是等腰直角三角形,DFABBFx4,在RtBOF中,OB2OF2+BF2,OBOC6,解得,或(舍去),OF的长的最大值等于,故答案为:【考点】本题考查了垂径定理,直角三角形斜边中线的性质,勾股定理等知识,确定点F与点D运动至共线时,OF长度最大是解题的关键3、【解析】【分析】先利用正多边形内角和公式求得每个内角,再利用扇形面积公式求出扇形ABF、扇形DCE的面积,即可得出结果【详解】由正多边形每个内角公式可得该正六边形的每一个内角;,;则阴影部分面积为:【考点】本题考查了正多边形和圆、扇形面积计算等知识;掌握正多边形内角的计算公式和扇形面积公式是解题的关键4、60【解析】【分析】根据扇形的

    15、面积公式求出半径,然后根据弧长公式求出圆心角即可【详解】解:扇形的面积=6,解得:r=6,又=2,n=60故答案为:60【考点】此题考查了扇形的面积和弧长公式,解题的关键是掌握运算方法5、6【解析】【分析】过点作于,连,根据垂径定理得,在中,利用含30度的直角三角形三边的关系可得到,再利用勾股定理计算出,由得到答案【详解】解:过点作于,连,如图则,在中,则,在中,则,则故答案为6【考点】本题考查了垂径定理,含30度的直角三角形三边的关系以及勾股定理,熟悉相关性质是解题的关键三、解答题1、2【解析】【分析】连接OC,利用直径AB=10,则OC=OA=5,再由CDAB,根据垂径定理得CE=DE=C

    16、D=4,然后利用勾股定理计算出OE,再利用AE=OA-OE进行计算即可【详解】连接OC,如图,AB是O的直径,AB10,OCOA5,CDAB,CEDECD84,在RtOCE中,OC5,CE4,OE3,AEOAOE532【考点】本题考查了垂径定理,掌握垂径定理及勾股定理是关键2、16【解析】【分析】连接OA,根据垂径定理可得AB=2AD,再由勾股定理,可得AD=8,即可求解【详解】解:如图,连接OA,OC为O的半径,弦ABOC,AB=2AD,OC10,CD4,OA=OC=10,OD=OC-CD=6,在中,由勾股定理得: ,AB=16【考点】本题主要考查了垂径定理,勾股定理,熟练掌握垂直弦的直径平

    17、分这条弦,并且平分线所对的两条弧是解题的关键3、(1)见解析;(2)见解析;(3)直线l是圆O的切线,理由见解析【解析】【分析】(1)由圆周角定理得AC,由ASA得出AEDCEB;(2)由直角三角形斜边上的中线性质得EFBCBF,由等腰三角形的性质得FEBB,由圆周角定理和对顶角相等证出AAEG90,进而得出结论;(3)作OHAB于H,连接OB,由垂径定理得出AHBHAB2,则EHAHAE1,由勾股定理求出OH1,OB,由一条直线l到圆心O的距离d等于O的半径,即可得出结论【详解】(1)证明:由圆周角定理得:AC,在AED和CEB中,AEDCEB(ASA);(2)证明:ABCD,AEDCEB9

    18、0,C+B90,点F是BC的中点,EFBCBF,FEBB,AC,AEGFEBB,A+AEGC+B90,AGE90,FGAD;(3)解:直线l是圆O的切线,理由如下:作OHAB于H,连接OB,如图所示:AE1,BE3,ABAE+BE4,OHAB,AHBHAB2,EHAHAE1,OH1,OB,即O的半径为,一条直线l到圆心O的距离dO的半径,直线l是圆O的切线【考点】本题是圆的综合题目,考查了圆周角定理、垂径定理、切线的判定、全等三角形的判定、直角三角形斜边上的中线性质、等腰三角形的性质、勾股定理等知识;本题综合性强,熟练掌握圆周角定理和垂径定理是解题的关键4、54【解析】【分析】连接OC,OD求出COD的度数,再根据圆周角定理即可解决问题【详解】如图,连接五边形是正五边形,90-36=54,的余角的度数为54【考点】本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型5、2.28【解析】【分析】由图形可知阴影面积=半圆面积-两个小三角形面积和,根据公式计算即可【详解】r22-2222=3.14222-4=2.28【考点】本题考查了圆的面积公式,解题的关键是熟练掌握间接法求阴影部分图形的面积

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年人教版九年级数学上册第二十四章圆专题训练练习题(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-696144.html
    相关资源 更多
  • 专题08与圆有关的定点问题以及阿波罗尼斯圆(解析版)-【重难点突破】2021-2022学年高二数学上册常考题专练(人教A版2019选择性必修第一册).docx专题08与圆有关的定点问题以及阿波罗尼斯圆(解析版)-【重难点突破】2021-2022学年高二数学上册常考题专练(人教A版2019选择性必修第一册).docx
  • 专题08与圆有关的定点问题以及阿波罗尼斯圆(原卷版)-【重难点突破】2021-2022学年高二数学上册常考题专练(人教A版2019选择性必修第一册).docx专题08与圆有关的定点问题以及阿波罗尼斯圆(原卷版)-【重难点突破】2021-2022学年高二数学上册常考题专练(人教A版2019选择性必修第一册).docx
  • 专题082020-2021年广东省中考英语考前必背书面表达50篇.docx专题082020-2021年广东省中考英语考前必背书面表达50篇.docx
  • 专题08 三角函数多选题(解析版).docx专题08 三角函数多选题(解析版).docx
  • 专题08 三角函数多选题 (原卷版).docx专题08 三角函数多选题 (原卷版).docx
  • 专题07:长方形和正方形的周长-2023年三年级数学寒假专项提升(人教版).docx专题07:长方形和正方形的周长-2023年三年级数学寒假专项提升(人教版).docx
  • 专题07:简单机械—2021年浙江省中考科学临阵磨枪系列(有答案).docx专题07:简单机械—2021年浙江省中考科学临阵磨枪系列(有答案).docx
  • 专题07:方程与实际问题-2023-2024学年五年级数学寒假专项提升(人教版).docx专题07:方程与实际问题-2023-2024学年五年级数学寒假专项提升(人教版).docx
  • 专题07:平行四边和梯形综合--2023-2024学年四年级数学寒假专项提升(人教版).docx专题07:平行四边和梯形综合--2023-2024学年四年级数学寒假专项提升(人教版).docx
  • 专题07:圆的面积综合-2023-2024学年六年级数学寒假专项提升(人教版).docx专题07:圆的面积综合-2023-2024学年六年级数学寒假专项提升(人教版).docx
  • 专题07:动词 句型转换 补全对话与短文 易错题查漏补缺组合练 Join in外研剑桥英语 含答案解析.docx专题07:动词 句型转换 补全对话与短文 易错题查漏补缺组合练 Join in外研剑桥英语 含答案解析.docx
  • 专题07热学实验(知识点复习 例题讲解 过关练习)-备战2023年中考物理一轮复习考点帮 (解析版).docx专题07热学实验(知识点复习 例题讲解 过关练习)-备战2023年中考物理一轮复习考点帮 (解析版).docx
  • 专题07热学实验(知识点复习 例题讲解 过关练习)-备战2023年中考物理一轮复习考点帮 (原卷版).docx专题07热学实验(知识点复习 例题讲解 过关练习)-备战2023年中考物理一轮复习考点帮 (原卷版).docx
  • 专题07有理数的乘除(4大考点 8种题型)(解析版).docx专题07有理数的乘除(4大考点 8种题型)(解析版).docx
  • 专题07有理数的乘除(4大考点 8种题型)(原卷版).docx专题07有理数的乘除(4大考点 8种题型)(原卷版).docx
  • 专题07实数全章复习(13个考点)强化训练(解析版).docx专题07实数全章复习(13个考点)强化训练(解析版).docx
  • 专题07实数全章复习(13个考点)强化训练(原卷版).docx专题07实数全章复习(13个考点)强化训练(原卷版).docx
  • 专题07全面依法治国(练习)(原卷版).docx专题07全面依法治国(练习)(原卷版).docx
  • 专题07代数式(6个知识点7种题型4个易错点)(原卷版).docx专题07代数式(6个知识点7种题型4个易错点)(原卷版).docx
  • 专题07人与自我---兴趣与爱好-2023年高考英语话题晨背-渐进写作.docx专题07人与自我---兴趣与爱好-2023年高考英语话题晨背-渐进写作.docx
  • 专题07二次函数的图象与性质(2)(4个知识点2种题型1个易错点)(原卷版).docx专题07二次函数的图象与性质(2)(4个知识点2种题型1个易错点)(原卷版).docx
  • 专题07三角形中的边角关系(6个知识点7种题型2个易错点4种中考考法)(原卷版).docx专题07三角形中的边角关系(6个知识点7种题型2个易错点4种中考考法)(原卷版).docx
  • 专题07三角函数与解三角形C辑(教师版含解析)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx专题07三角函数与解三角形C辑(教师版含解析)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx
  • 专题07三角函数与解三角形C辑(学生版)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx专题07三角函数与解三角形C辑(学生版)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx
  • 专题07一次函数全章复习(10大考点)强化训练(解析版).docx专题07一次函数全章复习(10大考点)强化训练(解析版).docx
  • 专题07《经典常谈》知识汇总-初中必考文学名著知识汇总与真题精练(通用版).docx专题07《经典常谈》知识汇总-初中必考文学名著知识汇总与真题精练(通用版).docx
  • 专题07《真是这样吗》《谦虚使人进步》《发出自己的声音》《我的理想》-2023年中考语文考前必背美文.docx专题07《真是这样吗》《谦虚使人进步》《发出自己的声音》《我的理想》-2023年中考语文考前必背美文.docx
  • 专题07PartBplay role (testC)答题技巧 真题 模拟-.docx专题07PartBplay role (testC)答题技巧 真题 模拟-.docx
  • 专题07PartBplay role (testC)答题技巧 真题 模拟- 备战2023年高考英语听说高分攻略(广东专用).docx专题07PartBplay role (testC)答题技巧 真题 模拟- 备战2023年高考英语听说高分攻略(广东专用).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1