分享
分享赚钱 收藏 举报 版权申诉 / 28

类型2022年人教版九年级数学上册第二十四章圆定向测试试卷(含答案详解版).docx

  • 上传人:a****
  • 文档编号:696227
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:28
  • 大小:544.04KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 年人教版 九年级 数学 上册 第二 十四 定向 测试 试卷 答案 详解
    资源描述:

    1、人教版九年级数学上册第二十四章圆定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABCD中,为的直径,O和相切于点E,和相交于点F,已知,则的长为()ABCD22、如图,在ABC中, AG

    2、平分CAB,使用尺规作射线CD,与AG交于点E,下列判断正确的是()AAG平分CDBC点E是ABC的内心D点E到点A,B,C的距离相等3、如图,正三角形PMN的顶点分别是正六边形ABCDEF三边的中点,则三角形PMN与六边形ABCDEF的面积之比()A1:2B1:3C2:3D3:84、丁丁和当当用半径大小相同的圆形纸片分别剪成扇形(如图)做圆锥形的帽子,请你判断哪个小朋友做成的帽子更高一些()A丁丁B当当C一样高D不确定5、如图,螺母的外围可以看作是正六边形ABCDEF,已知这个正六边形的半径是2,则它的周长是()A6B12C12D246、如图,AB是O的直径,BC与O相切于点B,AC交O于点

    3、D,若ACB=50,则BOD等于()A40B50C60D807、如图,已知长方形中,圆B的半径为1,圆A与圆B内切,则点与圆A的位置关系是()A点C在圆A外,点D在圆A内B点C在圆A外,点D在圆A外C点C在圆A上,点D在圆A内D点C在圆A内,点D在圆A外8、在平面直角坐标系中,O的半径为2,点A(1,)与O的位置关系是()A在O上B在O内C在O外D不能确定9、往直径为的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为()ABCD10、已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、

    4、如图,已知是的直径,且,弦,点是弧上的点,连接、,若,则的长为_2、如图,在矩形 中,是边上一点,连接,将矩形沿翻折,使点落在边上点处,连接.在上取点,以点为圆心,长为半径作与相切于点.若,给出下列结论:是的中点;的半径是2; ;.其中正确的是_.(填序号)3、用反证法证明:“如果两条直线都和第三条直线平行,那么这两条直线也互相平行”.第一步应假设:_4、如图,O是ABC的外接圆,A60,BC6,则O的半径是_5、如图,四边形是的外切四边形,且,则四边形的周长为_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,以为直径的与交于点,连接(1)求证:;(2)若与相切,求的度数;(3)

    5、用无刻度的直尺和圆规作出劣弧的中点(不写作法,保留作图痕迹)2、抛物线yax2+2x+c与x轴交于A(1,0)、B两点,与y轴交于点C(0,3),点D(m,3)在抛物线上(1)求抛物线的解析式;(2)如图1,连接BC、BD,点P在对称轴左侧的抛物线上,若PBCDBC,求点P的坐标;(3)如图2,点Q为第四象限抛物线上一点,经过C、D、Q三点作M,M的弦QFy轴,求证:点F在定直线上3、如图,两个圆都以点O为圆心,大圆的弦交小圆于两点求证: 4、如图,在ABC 中,ABAC,BAC120,点 D 在边 BC 上,O 经过点 A 和点 B且与边 BC 相交于点 D(1)判断 AC 与O 的位置关系

    6、,并说明理由(2)当 CD5 时,求O 的半径5、如图,AB是O的直径,弦CDAB,垂足为E,如果AB10,CD8,求线段AE的长-参考答案-一、单选题1、C【解析】【分析】首先求出圆心角EOF的度数,再根据弧长公式,即可解决问题【详解】解:如图连接OE、OF,CD是O的切线,OECD,OED=90,四边形ABCD是平行四边形,C=60,A=C=60,D=120,OA=OF,A=OFA=60,DFO=120,EOF=360-D-DFO-DEO=30,的长故选:C【考点】本题考查切线的性质、平行四边形的性质、弧长公式等知识,解题的关键是求出圆心角的度数,记住弧长公式2、C【解析】【分析】根据作法

    7、可得CD平分ACB,结合题意即可求解【详解】解:由作法得CD平分ACB,AG平分CAB,E点为ABC的内心故答案为:C【考点】此题考查了尺规作图(角平分线),以及三角形角平分线的性质,熟练掌握相关基本性质是解题的关键3、D【解析】【分析】连接BE,设正六边形的边长为a,首先证明PMN是等边三角形,分别求出PMN,正六边形ABCDEF的面积即可【详解】解:连接BE,设正六边形的边长为a则AFa,BE2a,AFBE,APPB,FNNE,PN(AF+BE)1.5a,同理可得PMMN1.5a,PNPMMN,PMN是等边三角形,故选:D【考点】本题考查正多边形与圆,等边三角形的判定和性质等知识,解题的关

    8、键是学会利用参数解决问题,属于中考常考题型4、B【解析】【分析】由图形可知,丁丁扇形的弧长大于当当扇形的弧长,根据弧长与圆锥底面圆的周长相等,可得丁丁剪成扇形做圆锥形的帽子的底面半径r大于当当剪成扇形做圆锥形的帽子的底面半径r,由扇形的半径相等,即母线长相等R,设圆锥底面圆半径为r,母线为R,圆锥的高为h,根据勾股定理由即,可得丁丁的h小于当当的h即可【详解】解:由图形可知,丁丁扇形的弧长大于当当扇形的弧长,根据弧长与圆锥底面圆的周长相等,丁丁剪成扇形做圆锥形的帽子的底面半径r大于当当剪成扇形做圆锥形的帽子的底面半径r,扇形的半径相等,即母线长相等R,设圆锥底面圆半径为r,母线为R,圆锥的高为

    9、h,,根据勾股定理由即,丁丁的h小于当当的h,由勾股定理可得当当做成的圆锥形的帽子更高一些故选:B【考点】本题考查扇形作圆锥帽子的应用,利用圆锥的母线底面圆的半径,和圆锥的高三者之间关系,根据勾股定理确定出当当的帽子高是解题关键5、C【解析】【分析】如图,先求解正六边形的中心角,再证明是等边三角形,从而可得答案【详解】解:如图,为正六边形的中心,为正六边形的半径,为等边三角形,正六边形ABCDEF的周长为故选:【考点】本题考查的是正多边形与圆,正多边形的半径,中心角,周长,掌握以上知识是解题的关键6、D【解析】【分析】根据切线的性质得到ABC=90,根据直角三角形的性质求出A,根据圆周角定理计

    10、算即可【详解】BC是O的切线,ABC=90,A=90-ACB=40,由圆周角定理得,BOD=2A=80,故选D【考点】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键7、C【解析】【分析】根据内切得出圆A的半径,再判断点D、点E到圆心的距离即可【详解】圆A与圆B内切,圆B的半径为1圆A的半径为55点D在圆A内在RtABC中,点C在圆A上故选:C【考点】本题考查点与圆的位置关系、圆与圆的位置关系、勾股定理,熟练掌握点与圆的位置关系是关键8、A【解析】【分析】根据点A的坐标,求出OA=2,根据点与圆的位置关系即可做出判断【详解】解:点A的坐标为(1,),由勾股定理可

    11、得:OA=,又O的半径为2,点A在O上故选:A【考点】本题考查了点和圆的位置关系,点和圆的位置关系是由点到圆心的距离和圆的半径间的大小关系确定的:(1)当时,点在圆外;(2)当时,点在圆上;(3)当时,点在圆内9、C【解析】【分析】过点O作ODAB于D,交O于E,连接OA,根据垂径定理即可求得AD的长,又由O的直径为,求得OA的长,然后根据勾股定理,即可求得OD的长,进而求得油的最大深度的长【详解】解:过点O作ODAB于D,交O于E,连接OA,由垂径定理得:,O的直径为,在中,由勾股定理得:,油的最大深度为,故选:【考点】本题主要考查了垂径定理的知识此题难度不大,解题的关键是注意辅助线的作法,

    12、构造直角三角形,利用勾股定理解决10、B【解析】【分析】根据题意可以求得半径,进而解答即可【详解】因为圆内接正三角形的面积为,所以圆的半径为,所以该圆的内接正六边形的边心距sin601,故选B【考点】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距二、填空题1、9【解析】【分析】连接OC和OE,由同弧所对的圆周角等于圆心角的一半求出COB=60,再在COH中求出CH,最后由垂径定理求出CD【详解】解:连接OC和OE,如下图所示:由同弧所对的圆周角等于圆心角的一半可知,A=EOB,D=COE,A+D=30,EOB+COE=COB=30,COB=60,CDAB,COH为30,

    13、60,90的三角形,其三边之比为,CH=,CD=2CH=9,故答案为:9【考点】本题考查了圆周角定理及垂径定理等相关知识点,本题的关键是求出COB=602、【解析】【详解】解:AF是AB翻折而来,AF=AB=6AD=BC=,DF=3,F是CD中点;正确;连接OP,O与AD相切于点P,OPADADDC,OPCD,设OP=OF=x,则,解得:x=2,正确;RtADF中,AF=6,DF=3,DAF=30,AFD=60,EAF=EAB=30,AE=2EFAFE=90,EFC=90AFD=30,EF=2EC,AE=4CE,错误;连接OG,作OHFG,AFD=60,OF=OG,OFG为等边同理OPG为等边

    14、,POG=FOG=60,OH=OG=,S扇形OPG=S扇形OGF,S阴影=(S矩形OPDHS扇形OPGSOGH)+(S扇形OGFSOFG)=S矩形OPDHSOFG=,正确;故答案为3、这两条直线不平行【解析】【分析】本题需先根据已知条件和反证法的特点进行证明,即可求出答案【详解】证明:已知两条直线都和第三条直线平行;假设这两条直线不平行,则两条直线有交点,因为过直线外一点有且只有一条直线与已知直线平行因此,两条直线有交点时,它们不可能同时与第三条直线平行因此假设与结论矛盾故假设不成立,即如果两条直线都和第三条直线平行,那么这两条直线也互相平行故答案为:这两条直线不平行【考点】本题主要考查了反证

    15、法,在解题时要根据反证法的特点进行证明是本题的关键4、6【解析】【分析】作直径CD,如图,连接BD,根据圆周角定理得到CBD90,D60,然后利用含30度的直角三角形三边的关系求出CD,从而得到O的半径【详解】解:作直径CD,如图,连接BD,CD为O直径,CBD90,DA60,BDBC66,CD2BD12,OC6,即O的半径是6故答案为6【考点】本题主要考查圆周角的性质,解决本题的关键是要熟练掌握圆周角的性质.5、48【解析】【分析】根据切线长定理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=24,根据四边形的周长公式计算,得到答案【详解】解:四边形ABCD是

    16、O的外切四边形,AE=AH,BE=BF,CF=CG,DH=DG,AD+BC=AB+CD=24,四边形ABCD的周长=AD+BC+AB+CD=24+24=48,故答案为:48【考点】本题考查了切线长定理,掌握从圆外一点引圆的两条切线,它们的切线长相等是解题的关键三、解答题1、 (1)证明见详解(2)(3)作图见详解【解析】【分析】(1)根据直径所对的圆周角是直角、等腰三角形的三线合一即可证明;(2)根据切线的性质可以得到,然后在等腰直角三角形中即可求解;(3)根据等弧所对的圆周角相等,可知可以作出AD的垂直平分线,的角平分线,的角平分线等方法均可得到结论(1)证明:是的直径,(2)与相切,又,(

    17、3)如下图,点就是所要作的的中点【考点】本题考查了等腰三角形的三线合一、切线的性质、以及尺规作图、等弧所对的圆周角相等,理解圆的相关知识并掌握基本的尺规作图方法是解题的关键2、 (1)(2)P(,)(3)证明见解析【解析】【分析】(1)把A、C坐标代入可得关于a、c的二元一次方程组,解方程组求出a、c的值即可得答案;(2)如图,设BP与y轴交于点E,直线解析式为,根据(1)中解析式可知D、B两点坐标,可得CD/AB,利用ASA可证明DCBECB,可得CE=CD,即可得出点E坐标,利用待定系数法可得直线BP的解析式,联立直线BP与抛物线解析式求出交点坐标即可得答案;(3)如图,连接MD,MF,设

    18、Q(m,-m2+2m+3),F(m,t),根据CD、QF为M的弦可得圆心M是CD、QF的垂直平分线的交点,即可表示出点M坐标,根据MD=MF,利用两点间距离公式可得()2+(2-1)2=(m-1)2+()2,整理可得t=2,即可得答案(1)A(1,0)、C(0,3)在抛物线yax2+2x+c图象上,解得:,抛物线解析式为:(2)如图,设BP与y轴交于点E,直线解析式为,点D(m,3)在抛物线上,解得:,(与点C重合,舍去),D(2,3),CD/AB,CD=2,当y=0时,解得:,B(3,0),OB=OC,OCB=OBC=DCB=45,在DCB和ECB中,DCBECB,CE=CD=2,OE=OC

    19、-CE=1,E(0,1),解得:,直线BP的解析式为,联立直线BP与抛物线解析式得:,解得:(舍去),P(,)(3)如图,连接MD,MF,设Q(m,-m2+2m+3),F(m,t),CD、QF为M的弦,圆心M是CD、QF的垂直平分线的交点,C(0,3),D(2,3),QF/y轴,M(1,),MD=MF,2+(2-1)2=(m-1)2+()2,整理得:t=2,点F在定直线y=2上【考点】本题考查待定系数法求二次函数解析式、全等三角形的判定与性质、二次函数与一次函数的交点问题及圆的性质,综合性强,熟练掌握相关知识及定理是解题关键3、见解析【解析】【分析】过点O作OPAB,由等腰三角形的性质可知AP

    20、=BP,再由垂径定理可知CP=DP,故可得出结论【详解】证明:如图所示,过点O作OPAB,垂足为点P,由垂径定理可得PAPB,PCPD,PAPCPBPD,ACBD【考点】本题考查的是垂径定理,根据题意作出辅助线,利用垂径定理求解是解答此题的关键4、 (1)AC 与O相切,理由见解析(2)O 的半径为5【解析】【分析】(1)连接AO,根据等腰三角形的性质得到B=C=30,BAO=B=30,求得AOC=60,根据三角形的内角和得到OAC=180-60-30=90,于是得到AC是O的切线;(2)连接AD,推出AOD是等边三角形,得到AD=OD,ADO=60,求得DAC=ADO-C=30,得到AD=C

    21、D=5,于是得到结论(1)解: AC是O的切线,理由如下:连接AO,AB=AC,BAC=120,B=C=(180-BAC)=30,AO=BO,BAO=B=30,AOC=2B=60,OAC=180-AOC-C=180-60-30=90,AO是O的半径,AC是O的切线;(2)解:连接AD,AO=OD,AOD=60,AOD是等边三角形,AD=OD,ADO=60,DAC=ADO-C=30,DAC=C=30,AD=CD=OD=5,D的半径为5【考点】本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键5、2【解析】【分析】连接OC,利用直径AB=10,则OC=OA=5,再由CDAB,根据垂径定理得CE=DE=CD=4,然后利用勾股定理计算出OE,再利用AE=OA-OE进行计算即可【详解】连接OC,如图,AB是O的直径,AB10,OCOA5,CDAB,CEDECD84,在RtOCE中,OC5,CE4,OE3,AEOAOE532【考点】本题考查了垂径定理,掌握垂径定理及勾股定理是关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年人教版九年级数学上册第二十四章圆定向测试试卷(含答案详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-696227.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1