分享
分享赚钱 收藏 举报 版权申诉 / 28

类型2022-2023学年福建省福州市仓山区八年级(下)期中数学试卷.pdf

  • 上传人:a****
  • 文档编号:761017
  • 上传时间:2025-12-14
  • 格式:PDF
  • 页数:28
  • 大小:672.30KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 福建省 福州市 山区 年级 期中 数学试卷
    资源描述:

    1、第 1页(共 28页)2022-2023 学年福建省福州市仓山区八年级(下)期中数学试卷一、选择题:本题共 10 小题,每小题 4 分,共 40 分在每小题给出的四个选项中,只有一项是符合题目要求的1(4 分)(2023 春灵宝市期末)下列各式是最简二次根式的是()A5B0.7C13D 82(4 分)(2023 春仓山区期中)下列各组长度的线段中,首尾顺次相接能构成直角三角形的是()A4,5,6B8,15,17C2,3,11D3,2,53(4 分)(2023 春仓山区期中)不等式 5332xx的解集是()A3xB3xC3xD3x4(4 分)(2023 春仓山区期中)下列运算正确的是()A532

    2、 2B62 61 C2(2)2 D8225(4 分)(2023 春仓山区期中)下列说法错误的是()A全等三角形的三组对应边相等B平行四边形的两组对角分别相等C对角线相等的四边形是矩形D四条边都相等的四边形是菱形6(4 分)(2023 春仓山区期中)如图,在矩形 ABCD 中,AC,BD 相交于点 O 若4AB,60AOB,则 BC 的长为()A8B 4 3C 2 3D47(4 分)(2023 春仓山区期中)若 21|36|0 xy,则 xy 的值为()A 2B 1C2D1第 2页(共 28页)8(4 分)(2023 春仓山区期中)如图,点 P 是正方形 ABCD 内一点,连接 AP,BP,CP

    3、 若 APB是等边三角形,则BPC的度数为()A30B 60C 75D909(4 分)(2023 春仓山区期中)一个平行四边形的一条边长为 7,两条对角线的长分别是 10 和 4 6,则这个平行四边形的面积为()A14 6B 20 6C35D 40 610(4 分)(2023 春仓山区期中)如图,一架梯子 AB 斜靠在某个走廊竖直的左墙上,顶端在点 A 处,底端在水平地面的点 B 处保持梯子底端 B 的位置不变,将梯子斜靠在竖直的右墙上,此时梯子的顶端在点 D 处,连接 AD,F 是线段 AD的一点,且/BFAC 若2ACm,1.5BCm,顶端 D 距离地面的高度 DE 比 AC 少0.5m,

    4、则下列结论不成立的是()A AB 的长为 2.5mBCE 的长为3.5m C AD 的长为5 22mD BF 的长为 53 m二、填空题:本题共 6 小题,每小题 4 分,共 24 分11(4 分)(2013无锡)六边形的外角和等于度12(4 分)(2021锦州一模)二次根式5x 有意义,则 x 的取值范围是13(4 分)(2023 春仓山区期中)在平面直角坐标系 xOy 中,点 A 的坐标为(1,3),则OA的长为第 3页(共 28页)14(4 分)(2021 春岑溪市期末)如图,菱形 ABCD 的周长为 24,对角线 AC,BD 交于点 O,点 E 是 BC 的中点,则 OE 的长是15(

    5、4 分)(2010山西模拟)当35x 时,代数式2610 xx的值为16(4 分)(2023 春仓山区期中)如图,在矩形 ABCD 中,22ADAB,AE,DF 分别平分BAD,ADC交 BC 于点 E,F,且 AE,DF 相交于点 O,连接 BO并延长交CD 于点G 则下面结论正确的是(写出所有正确结论的序号)AEDF;四边形 ABFO 是轴对称图形;21ABDG ;214DOGBOFSS三、解答题:本题共 9 小题,共 86 分解答应写出文字说明、证明过程或演算步骤17(8 分)计算:01(23)(23)6(13)218(8 分)(2023 春仓山区期中)先化简,再求值:211(1)24m

    6、mm,其中52m 19(10 分)(2021 春铜梁区期末)ABC中,13AB,10BC,BC 边的中线12AD,求 ABC的面积20(10 分)(2023 春仓山区期中)有大小两种货车,2 辆大货车与 3 辆小货车一次可以运货 16.5 吨,1 辆大货车与 1 辆小货车一次可以运货 7 吨大货车与小货车每辆一次各运货多少吨?第 4页(共 28页)21(10 分)(2023 春仓山区期中)如图,在平行四边形 ABCD 中,点 E,F 在对角线 AC 上,且 AFCE,连接 BE,DF,求证:BEDF22(10 分)如图,在矩形 ABCD 中,4AB,3BC ,点 E 是 BC 上一点,连接 A

    7、E,将 ABE沿着 AE 折叠,恰好点 B 与在CD 上的点 F 重合,求CE 的长23(10 分)(2023 春仓山区期中)如图,在梯形 ABCD 中,/ABCD,AB (1)尺规作图:在 AB 上找一点 E,连接CE,使得/CEAD;(不写作法,保留作图痕迹)(2)在(1)条件下,若60BCE,4CD ,10AB,求梯形 ABCD 的高24(10 分)(2023 春仓山区期中)如图,正方形 ABCD,点 E,F 分别在 BC,CD 的延长线上,连接 AE 交 CD 于点 G,连接 EF 交 AD 的延长线于点 H,且AHEH(1)求证:AE 平分BEF;(2)求EAF的度数;(3)如备用图

    8、,过点 F 作 FPAE于 P,求证:B,P,D 三点共线第 5页(共 28页)25(10 分)(2023 春仓山区期中)如图,在平面直角坐标系 xOy 中,11(,)22Amm,0m ,(2,0)B,ACx轴于点 C,ADy轴于点 D,且 E 是 y 轴正半轴上的一点,AEAB(1)求点 E 的坐标;(用含 m 的式子表示)(2)如备用图 1,已知(1,0)Fm,连接 AF,若135BAF,则:求 m 的值;如备用图 2,若 P,Q 分别是线段 OF,射线 FA 上的一点,求 OQPQ的最小值第 6页(共 28页)2022-2023 学年福建省福州市仓山区八年级(下)期中数学试卷参考答案与试

    9、题解析一、选择题:本题共 10 小题,每小题 4 分,共 40 分在每小题给出的四个选项中,只有一项是符合题目要求的1(4 分)(2023 春灵宝市期末)下列各式是最简二次根式的是()A5B0.7C13D 8【考点】最简二次根式【分析】根据最简二次根式被开方数不含能开方的因式和不含分母判断即可【解答】解:A 5 是最简二次根式,符合题意;B 0.7,被开方数含有分母,不是最简二次根式,不符合题意;C 13,被开方数含有分母,不是最简二次根式,不符合题意;D 8,被开方数含有能开方的因数 4,不是最简二次根式,不符合题意;故选:A 2(4 分)(2023 春仓山区期中)下列各组长度的线段中,首尾

    10、顺次相接能构成直角三角形的是()A4,5,6B8,15,17C2,3,11D3,2,5【考点】勾股定理的逆定理【分析】判断是否能组成直角三角形,只要验证两小边的平方和是否等于最长边的平方即可【解答】解:A、22245162541366,4,5,6 不能组成直角三角形,故本选项不符合题意;B、2228156422528917,8,15,17 能组成直角三角形,故本选项符合题意;C、22223491311(11),2,3,11 不能组成直角三角形,故本选项不符合题意;D、2222(3)4375(5),第 7页(共 28页)3,2,5 不能组成直角三角形,故本选项不符合题意故选:B 3(4 分)(2

    11、023 春仓山区期中)不等式 5332xx的解集是()A3xB3xC3xD3x【考点】解一元一次不等式【分析】先去分母,再移项合并同类项,即可求解【解答】解:5332xx,去分母得:53 6xx,移项合并同类项得:3x故选:D 4(4 分)(2023 春仓山区期中)下列运算正确的是()A532 2B62 61 C2(2)2 D822【考点】二次根式的混合运算【分析】根据二次根式的运算法则,逐项判断即可求解【解答】解:A、5 和3 不是同类二次根式,无法合并,原计算错误,不符合题意;B、62 66,原计算错误,不符合题意;C、2(2)2,原计算错误,不符合题意;D、822 222,正确,符合题意

    12、故选:D 5(4 分)(2023 春仓山区期中)下列说法错误的是()A全等三角形的三组对应边相等B平行四边形的两组对角分别相等C对角线相等的四边形是矩形D四条边都相等的四边形是菱形第 8页(共 28页)【考点】矩形的判定;全等三角形的性质;菱形的判定;平行四边形的性质【分析】根据全等三角形的性质,平行四边形的性质,矩形和菱形的判定,逐项判断即可求解【解答】解:A、全等三角形的三组对应边相等,故本选项正确,不符合题意;B、平行四边形的两组对角分别相等,故本选项正确,不符合题意;C、对角线相等的平行四边形是矩形,故本选项错误,符合题意;D、四条边都相等的四边形是菱形,故本选项正确,不符合题意;故选

    13、:C 6(4 分)(2023 春仓山区期中)如图,在矩形 ABCD 中,AC,BD 相交于点 O 若4AB,60AOB,则 BC 的长为()A8B 4 3C 2 3D4【考点】等边三角形的判定与性质;矩形的性质【分析】根据矩形的性质得到OAOB,证明 AOB为等边三角形,根据勾股定理计算,得到答案【解答】解:四边形 ABCD 为矩形12OAAC,12OBBD,ACBD,OAOB,60AOB,AOB为等边三角形,4OAAB,28ACOA,由勾股定理得,224 3BCACAB,故选:B 7(4 分)(2023 春仓山区期中)若 21|36|0 xy,则 xy 的值为()A 2B 1C2D1第 9页

    14、(共 28页)【考点】非负数的性质:绝对值;非负数的性质:算术平方根【分析】根据非负数的性质求出未知数的值,再代入计算即可【解答】解:21|36|0 xy,210,|36|0 xy,1x ,2y,1 22xy ,故选:A 8(4 分)(2023 春仓山区期中)如图,点 P 是正方形 ABCD 内一点,连接 AP,BP,CP 若 APB是等边三角形,则BPC的度数为()A30B 60C 75D90【考点】等边三角形的性质;正方形的性质【分析】求得30CBP,PBBC,根据三角形内角定理和等腰三角形的性质即可求解【解答】解:四边形 ABCD 是正方形,BCAB,90CBA,PAB是等边三角形,60

    15、PBA,PBAB,30CBP,PBBC,1(180)752BPCCBP ,故选:C 9(4 分)(2023 春仓山区期中)一个平行四边形的一条边长为 7,两条对角线的长分别是 10 和 4 6,则这个平行四边形的面积为()A14 6B 20 6C35D 40 6第 10页(共 28页)【考点】平行四边形的性质【分析】根据勾股定理逆定理可以说明平行四边形的对角线互相垂直,进而可以判断这个平行四边形是菱形,据此即可求解【解答】解:设平行四边形 ABCD 的对角线交于点 O,且10AC,4 6BD,7AB,152AOOCAC,12 62BOODBD,2225(2 6)2524497,222AOBOA

    16、B,90AOB,平行四边形 ABCD 是菱形平行四边形 ABCD 的面积为 11104 620 622ACBD,故选:B 10(4 分)(2023 春仓山区期中)如图,一架梯子 AB 斜靠在某个走廊竖直的左墙上,顶端在点 A 处,底端在水平地面的点 B 处保持梯子底端 B 的位置不变,将梯子斜靠在竖直的右墙上,此时梯子的顶端在点 D 处,连接 AD,F 是线段 AD的一点,且/BFAC 若2ACm,1.5BCm,顶端 D 距离地面的高度 DE 比 AC 少0.5m,则下列结论不成立的是()A AB 的长为 2.5mBCE 的长为3.5m C AD 的长为5 22mD BF 的长为 53 m【考

    17、点】相似三角形的应用【分析】根据勾股定理求出 AB、BE 的长,得出ACBBED,证明90ABD,利用勾股定理求出 AD,再利用平行线得出相似和比例式,求出 BF 即可【解答】解:2ACm,1.5BCm,第 11页(共 28页)222.5ABACBCm,A 成立,不符合题意;DE比 AC 少 0.5m,0.51.5()DEACm,2.5ABBDm,222EBBDDEm,3.5ECCBBEm,B 成立,不符合题意;ABBD,BCED,ACBE,()ACBBED SSS,ABCBDE,90DBEBDE,90DBEABC,90ABD,225 22ADABBDm,C 成立,不符合题意;连接 EF 并延

    18、长,交直线 AC 于 M,/BFAC,43EFBEFMCB,DEFAMF,BEFCEM,43EFDEFMAM,47BFCM,1.5DEm,98AMm,2ACm,258CMm,2514BFm,D 不成立,符合题意;第 12页(共 28页)故选:D 二、填空题:本题共 6 小题,每小题 4 分,共 24 分11(4 分)(2013无锡)六边形的外角和等于360度【考点】多边形内角与外角【分析】根据任何多边形的外角和是 360 度即可求出答案【解答】解:六边形的外角和等于 360 度故答案为:36012(4 分)(2021锦州一模)二次根式5x 有意义,则 x 的取值范围是5x【考点】二次根式有意义

    19、的条件【分析】根据二次根式的意义,被开方数是非负数列出方程,解方程即可【解答】解:根据题意得:5 0 x,解得5x故答案为:5x13(4 分)(2023 春仓山区期中)在平面直角坐标系 xOy 中,点 A 的坐标为(1,3),则OA的长为10【考点】勾股定理;两点间的距离公式【分析】根据勾股定理计算即可【解答】解:点 A 的坐标为(1,3),由勾股定理得221310OA 故答案为:10 14(4 分)(2021 春岑溪市期末)如图,菱形 ABCD 的周长为 24,对角线 AC,BD 交于点 O,点 E 是 BC 的中点,则 OE 的长是3第 13页(共 28页)【考点】直角三角形斜边上的中线;

    20、三角形中位线定理;菱形的性质【分析】利用菱形的性质得出6BC ,进而直角三角形斜边上的中线性质求出OE,即可得出结果【解答】解:四边形 ABCD 是菱形,6ABBCCDAD,ACBD,点 E 为 AD 边的中点,OE是 Rt AOD的斜边上的中线,26ADOE,3OE;故答案为:315(4 分)(2010山西模拟)当35x 时,代数式2610 xx的值为6【考点】7A:二次根式的化简求值【分析】由已知得35x,将代数式变形为完全平方式后,再整体代入【解答】解:由已知得35x,22610(3)1xxx2(5)16 16(4 分)(2023 春仓山区期中)如图,在矩形 ABCD 中,22ADAB,

    21、AE,DF 分别平分BAD,ADC交 BC 于点 E,F,且 AE,DF 相交于点 O,连接 BO并延长交CD 于点 G 则下面结论正确的是(写出所有正确结论的序号)AEDF;四边形 ABFO 是轴对称图形;21ABDG ;第 14页(共 28页)214DOGBOFSS【考点】四边形综合题【分析】根据矩形的性质和角平分线的性质即可得出答案;连接 AF,根据中的结论可知AOD是等腰直角三角形,再结合的长可求出1AO ,从而得出结论;延长 AB、DF 相交于点 H,根据题中条件证明()BOHGOD ASA,可得DGBH,即可证出结论;取 BC 的中点 M,连接OM,可知1122DOGBOFSSDG

    22、MCBFOM,即可求出答案【解答】解:四边形 ABCD 是矩形,AE,DF 分别平分BAD,ADC,45BEACFD ,90EOF,AEDF;连接 AF,如图所示,由知,EOF是等腰直角三角形,四边形 ABCD 是矩形,45DAOBEA ,45FDACFD ,AOD是等腰直角三角形,22ADAB,1AB,222ADAODOAO,第 15页(共 28页)1AO,AFAF,Rt ABFRt AOF(HL),四边形 ABFO 是以 AF 为对称轴的轴对称图形;延长 AB、DF 相交于点 H,如图所示,四边形 ABCD 是矩形,AE,DF 分别平分BAD,ADC,22ADAB45BAE,45ODG,1

    23、DCAB,2BCAD,DCF是等腰直角三角形,1CFDC,21BFBCCF,由得,AEDF,AOH是等腰直角三角形,45H,AOOH,HODG,90HBF,是等腰直角三角形,21BHBF,由知,AOD是等腰直角三角形,AOOD,OHOD,又BOHGOD,()BOHGOD ASA,第 16页(共 28页)21DGBH,12121ABDG;取 BC 的中点 M,连接OM,如图所示,四边形 ABCD 是矩形,22ADAB,1222MCBC,由知,()BOHGOD ASA,OBOG,点 O 为 BG 的中点,OM是 BCG的中位线,/OMCG,12OMCG,四边形 ABCD 是矩形,22ADAB,90

    24、C,1DCAB,OMBC,由得,21DG ,21BF ,22CGDCDG,212OM ,11121232 2(21)(21)(1)2222222DOGBOFSSDGMCBFOM;故答案为:三、解答题:本题共 9 小题,共 86 分解答应写出文字说明、证明过程或演算第 17页(共 28页)步骤17(8 分)计算:01(23)(23)6(13)2【考点】二次根式的混合运算;零指数幂【分析】先根据平方差公式,二次根式的化简和零指数幂算出结果,再进行二次根式的加减运算【解答】解:01(23)(23)6(13)2243612433 213 218(8 分)(2023 春仓山区期中)先化简,再求值:211

    25、(1)24mmm,其中52m 【考点】分式的化简求值【分析】先根据分式运算法则进行化简,再代入数值计算即可【解答】解:211(1)24mmm,2211()224mmmmm,1(2)(2)21mmmmm,2m;把52m 代入,原式522519(10 分)(2021 春铜梁区期末)ABC中,13AB,10BC,BC 边的中线12AD,求 ABC的面积【考点】勾股定理的逆定理;三角形的面积【分析】根据勾股定理的逆定理可以判断 ABD的形状,然后根据三角形的面积公式可以求得 ABC的面积【解答】解:AD是 BC 的中线,10BC,5BD,13AB,12AD,第 18页(共 28页)222BDADAB,

    26、ABD是直角三角形,90ADB,ABC的面积是:10 126022BC AD,即 ABC的面积是 6020(10 分)(2023 春仓山区期中)有大小两种货车,2 辆大货车与 3 辆小货车一次可以运货 16.5 吨,1 辆大货车与 1 辆小货车一次可以运货 7 吨大货车与小货车每辆一次各运货多少吨?【考点】二元一次方程组的应用;一元一次方程的应用【分析】设每辆大货车一次运货 x 吨,每辆小货车一次运货 y 吨,根据等量关系列方程,可求解【解答】解:设每辆大货车一次运货 x 吨,每辆小货车一次运货 y 吨,依题意列方程组,2316.57xyxy,解得4.52.5xy,答:每辆大货车一次运货 4.

    27、5 吨,每辆小货车一次运货 2.5 吨21(10 分)(2023 春仓山区期中)如图,在平行四边形 ABCD 中,点 E,F 在对角线 AC 上,且 AFCE,连接 BE,DF,求证:BEDF【考点】全等三角形的判定与性质;平行四边形的性质【分析】根据平行四边形 ABCD,利用 SAS 可以证明ADFCBE,即可得到BEDF【解答】证明:四边形 ABCD 是平行四边形,/ADBC,ADCB,第 19页(共 28页)DAFBCE,在 ADF和 CBE中,ADCBDAFBCEAFCE,()ADFCBE SAS,BEDF22(10 分)如图,在矩形 ABCD 中,4AB,3BC ,点 E 是 BC

    28、上一点,连接 AE,将 ABE沿着 AE 折叠,恰好点 B 与在CD 上的点 F 重合,求CE 的长【考点】矩形的性质;翻折变换(折叠问题)【分析】根据勾股定理求出 FD 的长,再设 CEx,利用勾股定理列出方程即可求解【解答】解:由折叠可知4ABAF,EBEF,90D,2222437DFAFAD,设CEx,则设3BEFEx,47FC,根据勾股定理得,222(47)(3)xx,解得4 773x,CE的长为 4 77323(10 分)(2023 春仓山区期中)如图,在梯形 ABCD 中,/ABCD,AB (1)尺规作图:在 AB 上找一点 E,连接CE,使得/CEAD;(不写作法,保留作图痕迹)

    29、(2)在(1)条件下,若60BCE,4CD ,10AB,求梯形 ABCD 的高第 20页(共 28页)【考点】梯形;作图复杂作图【分析】(1)根据内错角相等,两直线平行,作ECACAD 即可解决问题;(2)证明四边形 AECD 是平行四边形,求得6BEABAE,再证明 BCE是等边三角形,作CFBE于点 F,根据等边三角形的性质和勾股定理即可求解【解答】解:(1)如图,CE 即为所作,;(2)解:/ABCD,/CEAD,四边形 AECD 是平行四边形,AECD,4CD,10AB,1046BEABAE,DABB,DABCEBB ,60BCE,BCE是等边三角形,6BCBE,60B,作CFBE于点

    30、 F,132BFBE,223 3CFBCBF,答:梯形 ABCD 的高为3 3 24(10 分)(2023 春仓山区期中)如图,正方形 ABCD,点 E,F 分别在 BC,CD 的延长线上,连接 AE 交 CD 于点 G,连接 EF 交 AD 的延长线于点 H,且AHEH第 21页(共 28页)(1)求证:AE 平分BEF;(2)求EAF的度数;(3)如备用图,过点 F 作 FPAE于 P,求证:B,P,D 三点共线【考点】四边形综合题【分析】(1)先根据四边形 ABCD 是正方形,证明/ADBC,推出HAEAEB,得到 AHEH,推出HAEHEA,据此即可证明 AE 平分BEF;(2)过点

    31、A 作 AMEF交 EF 的延长线于点 M,ANAF交 BE 于点 N,先根据四 边 形 ABCD 是 正 方 形,证 明90BADBADC ,ABAD,得 到90BMADF ,依 次 证 明()AEBAEM AAS,()BANDAF ASA 和Rt ABNRt AMF(HL),得 到BAEMAE,BANMAF,最 后 证 明190452EAF ;(3)连接 BP,DP,延长 FP、AB 相交于点 O,设 FO 交 BC 于点T,FP 交 AD 于点 L,连接 AT,根据 FPAE,得到90FPAOPAFPETPE ,再根据四边 形 ABCD 是 正 方 形,得 到90ABCADC ,ABAD

    32、,依 次 证 明()FPETPE ASA,推 出 EFET,()AEFAET SAS,推 出 AFAT,Rt ABTRt ADF(HL),推出BATDAF,然后证明 OBTOPA和 OBPOTA,得到TPBBAT,同理证明 ALPFLD和 ALFPLD,得到DAFDPF,据此进一步计算即可求解【解答】(1)证明:四边形 ABCD 是正方形,/ADBC,HAEAEB,AHEH,第 22页(共 28页)HAEHEA,HEAAEB,AE平分BEF;(2)解:过点 A 作 AMEF交 EF 的延长线于点 M,ANAF交 BE 于点 N,则90MNAF,四边形 ABCD 是正方形,90BADBADC ,

    33、ABAD,90BMADF ,AE平分BEF,AEBAEM,BAEMAE,ABAM,90BADNAF,BADNADNAFNAD ,即BANDAF,在 BAN和 DAF中,90BADFABADBANDAF ,()BANDAF ASA,ANAF,在 Rt ABN和 Rt AMF中,ABAMANAF,Rt ABNRt AMF(HL),BANMAF,又BAEMAE,第 23页(共 28页)BAEBANMAEBAN ,即12EANEAFNAF,又90NAF,190452EAF ;(3)证明:连接 BP,DP,延长 FP、AB 相交于点 O,设 FO 交 BC 于点T,FP 交AD 于点 L,连接 AT,F

    34、PAE,90FPAOPAFPETPE ,四边形 ABCD 是正方形,90ABCADC ,ABAD,90OBTADF ,AE平分BEF,AEFAEB,在 FPE和 TPE中,90FPETPEPEPEAEBAEF ,()FPETPE ASA,EFET,在 AEF和 AET中,EFETAEFAEBAEAE,()AEFAET SAS,第 24页(共 28页)AFAT,在 Rt ABT和 Rt ADF中,ABADATAF,Rt ABTRt ADF(HL),BATDAF,90OBTOPA,OO,OBTOPA,OBOTOPOA,又OO,OBPOTA,OPBOAT,即TPBBAT,90ADFFPA,ALPFL

    35、D,ALPFLD,ALPLFLDL,又ALFPLD,ALFPLD,DAFDPF,又BATDAF,TPEBAT,TPBDPF,又180TBPAPBFPA ,180TBPFPA,即180BPD,B,P,D 三点共线25(10 分)(2023 春仓山区期中)如图,在平面直角坐标系 xOy 中,11(,)22Amm,0m ,(2,0)B,ACx轴于点 C,ADy轴于点 D,且 E 是 y 轴正半轴上的一点,AEAB第 25页(共 28页)(1)求点 E 的坐标;(用含 m 的式子表示)(2)如备用图 1,已知(1,0)Fm,连接 AF,若135BAF,则:求 m 的值;如备用图 2,若 P,Q 分别是

    36、线段 OF,射线 FA 上的一点,求 OQPQ的最小值【考点】三角形综合题【分析】(1)根据 HL 证明 Rt AEDRt ABC,得到122EDBCm,推出112222OEmmm,即可求解;(2)根据 SAS 证明EAFBAF 得到3EFBFm,而2OEm,1OFm,利用勾股定理即可求解;作点 O 关于直线 AF 的对称点 O,连接O Q,O O,O P,则OQPQO QPQ,由于 O QPQ O P,故只要求得 O P的最小值即可得到 OQPQ的最小值,根据垂线段最短可知,当O Px轴时,O P 最小,据此进一步计算即可求解【解答】解:(1)11(,)22Amm,ACx轴,ADy轴,12A

    37、CADODCOm,在 Rt AED和 Rt ABC中,AEABADAC,Rt AEDRt ABC(HL),DEBC,(2,0)B,第 26页(共 28页)122EDBCOBCOm,112222OEDEODmmm,点 E 的坐标为(0,2)m;(2)连接 EF,由(1)可知 Rt AEDRt ABC,EADBAC,90EADDABBACDABDAC ,90EAB,36036013590135FAEBAFEAB ,EAFBAF,在 EAF和 BAF中,AEABEAFBAFAFAF,()EAFBAF SAS,2(1)3EFBFmm,2OEm,1OFm,90AOE,2222(2)(1)EFOEOFmm

    38、,22(2)(1)3mmm,2m;作点 O 关于直线 AF 的对称点 O,连接O Q,O O,O P,则OQPQO QPQ,第 27页(共 28页)由于O QPQ O P,故只要求得O P 的最小值即可得到OQPQ的最小值,根据垂线段最短可知,当O Px轴时,O P 最小,由得2m ,(3,0)F,(1,1)A,设直线 AF 的解析式为(0)ykxb k,把(3,0)F,(1,1)A 代入得130kbkb,解得:1232kb,直线 AF 的解析式为1322yx,设点 O 的坐标为(,)a c,则 O、O 的中点 G 的坐标为(,)2 2a c,直线 AF 与 y 轴的交点为 I,则点 I 的坐

    39、标为3(0,)2,2233 53()22FI,1122OFOIFIOG,3 55OG,2223 5()()()223ac,整理得22365ac,点 O 与点 O 关于直线 AF 对称,点G 在直线 AF 上,132222ca,第 28页(共 28页)即132ca,22136(3)25aa,整理得22560360aa,即2(56)0a ,解得:65a ,则125c,点O 到 x 轴的距离为125,即OQPQ的最小值为125 声明:试 题解析著作权 属菁优网所有,未经书面同 意,不得复制 发布日期:2024/3/20 12:09:05;用户:彼粒星;邮箱:orFmNt 3ioZ7m 9pIbCI01vF5XpRE;学号:40668998

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年福建省福州市仓山区八年级(下)期中数学试卷.pdf
    链接地址:https://www.ketangku.com/wenku/file-761017.html
    相关资源 更多
  • 专题12 词汇考点汇总-2023年江苏中考英语一轮复习(牛津译林版).docx专题12 词汇考点汇总-2023年江苏中考英语一轮复习(牛津译林版).docx
  • 专题12 词汇替换句式应用及高考应用文练习-备战2022年高考英语书面表达应用文满分攻略.docx专题12 词汇替换句式应用及高考应用文练习-备战2022年高考英语书面表达应用文满分攻略.docx
  • 专题12 解放战争 2023年中考历史一轮复习专题训练(湖南专用).docx专题12 解放战争 2023年中考历史一轮复习专题训练(湖南专用).docx
  • 专题12 补全对话-2020-2021学年八年级英语下学期期中专项复习(外研版).docx专题12 补全对话-2020-2021学年八年级英语下学期期中专项复习(外研版).docx
  • 专题12 自测section 23---24-2021高考英语3500考纲词汇自测.docx专题12 自测section 23---24-2021高考英语3500考纲词汇自测.docx
  • 专题12 胡不归求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx专题12 胡不归求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx
  • 专题12 胡不归求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx专题12 胡不归求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx
  • 专题12 综合与实践(教师版).docx专题12 综合与实践(教师版).docx
  • 专题12 综合与实践(学生版).docx专题12 综合与实践(学生版).docx
  • 专题12 简单机械-(3大模块知识清单 5个易混易错 5种方法技巧 典例真题精析)-【口袋书】2024年中考物理一轮复习知识清单(解析版).docx专题12 简单机械-(3大模块知识清单 5个易混易错 5种方法技巧 典例真题精析)-【口袋书】2024年中考物理一轮复习知识清单(解析版).docx
  • 专题12 简单机械-(3大模块知识清单 5个易混易错 5种方法技巧 典例真题精析)-【口袋书】2024年中考物理一轮复习知识清单(原卷版).docx专题12 简单机械-(3大模块知识清单 5个易混易错 5种方法技巧 典例真题精析)-【口袋书】2024年中考物理一轮复习知识清单(原卷版).docx
  • 专题12 空间向量的坐标表示8种常见考法归类(原卷版) .docx专题12 空间向量的坐标表示8种常见考法归类(原卷版) .docx
  • 专题12 祈使句 八年级英语提分方案(人教新目标)【学.docx专题12 祈使句 八年级英语提分方案(人教新目标)【学.docx
  • 专题12 祈使句 2020-2021学年【教育机构专用教材 寒假作业】八年级英语提分方案(外研版)【学科网名师堂】.docx专题12 祈使句 2020-2021学年【教育机构专用教材 寒假作业】八年级英语提分方案(外研版)【学科网名师堂】.docx
  • 专题12 短文首字母填空15篇(解析版).docx专题12 短文首字母填空15篇(解析版).docx
  • 专题12 短文首字母填空15篇(名校最新期中真题)-2021-2022学年七年级英语下学期期中复习查缺补漏冲刺满分(人教版).docx专题12 短文首字母填空15篇(名校最新期中真题)-2021-2022学年七年级英语下学期期中复习查缺补漏冲刺满分(人教版).docx
  • 专题12 短文首字母填空15篇(原卷版).docx专题12 短文首字母填空15篇(原卷版).docx
  • 专题12 盐和化肥(原卷版).docx专题12 盐和化肥(原卷版).docx
  • 专题12 电磁感应-【口袋书】2024年高考物理一轮复习知识清单(全国通用).docx专题12 电磁感应-【口袋书】2024年高考物理一轮复习知识清单(全国通用).docx
  • 专题12 电流 电压 电阻和电路-2021年全国中考物理真题专项汇编(第一期)(解析版).docx专题12 电流 电压 电阻和电路-2021年全国中考物理真题专项汇编(第一期)(解析版).docx
  • 专题12 电功和电功率---四川省2019年、2020年物理中考试题分类汇编(含解析)-试卷中心.docx专题12 电功和电功率---四川省2019年、2020年物理中考试题分类汇编(含解析)-试卷中心.docx
  • 专题12 环形跑道问题(二)-2022-2023学年小升初数学行程问题高频常考易错真题专项汇编(通用版).docx专题12 环形跑道问题(二)-2022-2023学年小升初数学行程问题高频常考易错真题专项汇编(通用版).docx
  • 专题12 物质的量浓度-【题高分】2022-2023学年高一化学同步教学专题讲义(人教版2019必修第一册).docx专题12 物质的量浓度-【题高分】2022-2023学年高一化学同步教学专题讲义(人教版2019必修第一册).docx
  • 专题12 牛津译林版初中英语单元错题集—9AU4.docx专题12 牛津译林版初中英语单元错题集—9AU4.docx
  • 专题12 牛津译林版初中英语单元错题集—8BU4.docx专题12 牛津译林版初中英语单元错题集—8BU4.docx
  • 专题12 概率(学生版).docx专题12 概率(学生版).docx
  • 专题12 概率(3大易错点分析 解题模板 举一反三 易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx专题12 概率(3大易错点分析 解题模板 举一反三 易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
  • 专题12 概率(3大易错点分析 解题模板 举一反三 易错题通关)-备战2024年高考数学考试易错题(新高考专用)(原卷版).docx专题12 概率(3大易错点分析 解题模板 举一反三 易错题通关)-备战2024年高考数学考试易错题(新高考专用)(原卷版).docx
  • 专题12 椭圆、双曲线的焦点弦被焦点分成定比-2021-2022学年高二数学培优辅导(人教A版2019选择性必修第一册).docx专题12 椭圆、双曲线的焦点弦被焦点分成定比-2021-2022学年高二数学培优辅导(人教A版2019选择性必修第一册).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1