8.2 函数与数学模型(六大题型)(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 8.2 函数与数学模型六大题型原卷版 函数 数学模型 六大 题型 原卷版
- 资源描述:
-
1、 82 函数与数学模型课程标准学习目标(1)通过本节内容的学习,让学生结合实例,选择合适的函数模型,运用函数模型解决实际问题,提升直观想象和逻辑推理素养.(2)通过数据分析对应的函数模型,提升逻辑推理素养.(3)将实际问题转化为数学问题,由函数解析式求值和有关函数解析式的计算,提升直观想象和数学运算素养.(1)了解指数函数、对数函数及幂函数等函数模型的增长差异.(2)会根据函数的增长差异选择函数模型(3)能自建确定性函数模型解决实际问题.(4)了解建立拟合函数模型的步骤,并了解检验和调整的必要性知识点01 几种常见的函数模型1、一次函数模型:(,为常数,)2、二次函数模型:(为常数,)3、指数
2、函数模型:(为常数,且)4、对数函数模型:(为常数,且)5、幂函数模型:(为常数,)6、分段函数模型:【即学即练1】(2023浙江金华高一阶段练习)今有一组实验数据如下:现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是()ABCD知识点02 解答应用问题的基本思想和步骤1、解应用题的基本思想2、解答函数应用题的基本步骤求解函数应用题时一般按以下几步进行:第一步:审题弄清题意,分清条件和结论,理顺数量关系,初步选择模型第二步:建模在细心阅读与深入理解题意的基础上,引进数学符号,将问题的非数学语言合理转化为数学语言,然后根据题意,列出数量关系,建立函数模型这时,要注意函数的
3、定义域应符合实际问题的要求第三步:求模运用数学方法及函数知识进行推理、运算,求解数学模型,得出结果第四步:还原把数学结果转译成实际问题作出解答,对于解出的结果要代入原问题中进行检验、评判,使其符合实际背景上述四步可概括为以下流程:实际问题(文字语言)数学问题(数量关系与函数模型)建模(数学语言)求模(求解数学问题)反馈(还原成实际问题的解答)3、解答函数应用题应注意的问题首先,要认真阅读理解材料应用题所用的数学语言多为“文字语言、符号语言、图形语言”并用,往往篇幅较长,立意有创新脱俗之感阅读理解材料要达到的目标是读懂题目所叙述的实际问题的意义,领悟其中的数学本质,接受题目所约定的临时性定义,理
4、解题目中的量与量的位置关系、数量关系,确立解体思路和下一步的努力方向,对于有些数量关系较复杂、较模糊的问题,可以借助画图和列表来理清它其次,建立函数关系根据前面审题及分析,把实际问题“用字母符号、关系符号”表达出来,建立函数关系其中,认真阅读理解材料是建立函数模型的关键在阅读这一过程中应像解答语文和外语中的阅读问题一样,有“泛读”与“精读”之分这是因为一般的应用问题,一方面为了描述的问题与客观实际尽可能地相吻合,就必须用一定的篇幅描述其中的情境;另一方面有时为了思想教育方面的需要,也要用一些非数量关系的语言来叙述,而我们解决问题所关心的东西是数量关系,因此对那些叙述的部分只需要“泛读”即可反过
5、来,对那些刻画数量关系、位置关系、对应关系等与数学有关的问题的部分,则应“精读”,一遍不行再来一遍,直到透彻地理解为止,此时切忌草率【即学即练2】(2023安徽阜阳高二校考期中)某化学试剂厂以千克/小时的速度匀速生产某种产品(生产条件要求),每小时可获得的利润是万元.(1)要使生产该产品2小时获得的利润不低于30万元,求的取值范围;(2)要使生产120千克该产品获得的利润最大,则该工厂应该选取何种生产速度?并求出最大利润.题型一:一次函数与二次函数模型的应用例1(2023全国高二专题练习)为了保护环境,某工厂在政府部门的鼓励下进行技术改进:把二氧化碳转化为某种化工产品,经测算,处理成本 (单位
6、:万元)与处理量 (单位:吨)之间的函数关系可近似表示为,已知每处理一吨二氧化碳可获得价值20万元的某种化工产品(1)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?例2(1982全国高考真题)以墙为一边,用篱笆围成长方形的场地,并用平行于一边的篱笆隔开(如图)已知篱笆的总长为定值L,这块场地的长和宽各为多少时场地的面积最大?最大面积是多少?例3(2023河南高二校联考阶段练习)某企业为了增加工作岗位和增加员工收入,投入90万元安装了一套新的生产设备,预计使用该设备后前年的支出成本为万
7、元,每年的销售收入95万元设使用该设备前年的总盈利额为万元(1)写出关于的函数关系式,并估计该设备从第几年开始盈利;(2)使用若干年后对该设备处理的方案有两种:方案一:当总盈利额达到最大值时,该设备以20万元的价格处理;方案二:当年平均盈利额达到最大值时,该设备以60万元的价格处理;问哪种方案较为合理?并说明理由变式1(2023高二课时练习)几名大学毕业生合作开设3D打印店,生产并销售某种3D产品.已知该店每月生产的产品当月都能销售完,每件产品的生产成本为34元,该店的月总成本由两部分组成:第一部分是月销售产品的生产成本,第二部分是其他固定支出20000元.假设该产品的月销售量t(件)与销售价
8、格x(元/件)()之间满足如下关系:当时,;当时,.记该店月利润为M(元),月利润=月销售总额-月总成本.(1)求M关于销售价格x的函数关系式;(2)求该打印店的最大月利润及此时产品的销售价格.变式2(2023高二课时练习)已知某养猪场的固定成本是20000元,每年最大规模的养殖量为600头,且每养1头猪,成本增加100元,养x头猪的收益函数为,记,分别为养x头猪的成本函数和利润函数(1)分别求,的表达式;(2)当x取何值时,最大?【方法技巧与总结】1、一次函数模型的应用利用一次函数求最值,常转化为求解不等式(或)解答时,注意系数a的正负,也可以结合函数图象或其单调性来求最值2、二次函数模型的
9、应用构建二次函数模型解决最优问题时,可以利用配方法、判别式法、换元法、讨论函数的单调性等方法求最值,也可以根据函数图象的对称轴与函数定义域的对应区间之间的位置关系讨论求解,但一定要注意自变量的取值范围题型二:分段与分式函数模型的应用例4(2023江苏无锡高一江阴市青阳中学校考阶段练习)为响应国家提出的“大众创业,万众创新”的号召,小王同学大学毕业后,决定利用所学专业进行自主创业经过市场调查,生产某小型电子产品需投入年固定成本为2万元,每生产万件,需另投入流动成本为万元在年产量不足8万件时,(万元);在年产量不小于8万件时,每件产品售价为6元假设小王生产的商品当年全部售完.(1)写出年利润(万元
10、)关于年产量x(万件)的函数解析式(注:年利润=年销售收入-固定成本-流动成本);(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?例5(2023江西南昌高二校联考期末)民族要复兴,乡村要振兴,合作社助力乡村产业振兴,农民专业合作社已成为新型农业经营主体和现代农业建设的中坚力量,为实施乡村振兴战略作出了巨大的贡献.某农民专业合作社为某品牌服装进行代加工,已知代加工该品牌服装每年需投入固定成本30万元,每代加工万件该品牌服装,需另投入万元,且根据市场行情,该农民专业合作社为这一品牌服装每代加工一件服装,可获得12元的代加工费.(1)求该农民专业合作社为这一品牌服装代加
11、工费的年利润y(单位:万元)关于年代加工量x(单位:万件)的函数解析式.(2)当年代加工量为多少万件时,该农民专业合作社为这一品牌服装代加工费的年利润最大?并求出年利润的最大值.例6(2023全国高三专题练习)已知某公司生产某款产品的年固定成本为40万元,每生产1件产品还需另外投入16元,设该公司一年内共生产万件产品并全部销售完,每万件产品的销售收入为万元,且已知(1)求利润(万元)关于年产量(万件)的函数解析式:(2)当年产量为多少万件时?公司在该款产品的生产中所获得的利润最大,并求出最大利润.变式3(2023江苏宿迁高二统考期中)小王大学毕业后,决定利用所学专业进行自主创业经过市场调查,生
12、产某小型电子产品需投入年固定成本为2万元,每生产万件,需另投入流动成本为万元,在年产量不足8万件时,(万元),在年产量不小于8万件时,(万元),每件产品售价为5元通过市场分析,小王生产的商品能当年全部售完(1)写出年利润(万元)关于年产量(万件)的函数解析式;(注:年利润=年销售收入固定成本流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?变式4(2023广东高二统考期末)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超
13、过4尾/立方米时,的值为2千克/年;当时,是的一次函数;当达到20尾/立方米时,因缺氧等原因,的值为0千克/年.(1)当时,求函数关于的函数表达式;(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.变式5(2023天津宁河高一天津市宁河区芦台第一中学校考阶段练习)2023年某企业计划引进新能源汽车生产设备,经过市场分析,全年投入固定成本2500万元,每生产百辆新能源汽车需另投入成本万元,且,由市场调研知,每一百辆车的售价为500万元,且全年内生产的车辆当年能全部销售完.(注:利润销售额成本)(1)求2023年的利润(万元)关于年产量(百辆)的函数关系式.(
14、2)当2023年的年产量为多少百辆时,企业所获利润最大?并求出最大利润.变式6(2023四川成都高一四川省成都市玉林中学校考期中)某科技企业生产一种电子设备的年固定成本为600万元,除此之外每台机器的额外生产成本与产量满足一定的关系式设年产量为台,若年产量不足70台,则每台设备的额外成本为万元;若年产量大于等于70台不超过200台,则每台设备的额外成本为万元每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完(1)写出年利润W(万元)关于年产量x(台)的关系式;(2)当年产量为多少台时,年利润最大,最大值为多少?【方法技巧与总结】1、分段函数的“段”一定要分得合理,不重不漏2
15、、分段函数的定义域为对应每一段自变量取值范围的并集3、分段函数的值域求法:逐段求函数值的范围,最后比较再下结论题型三:指数、对数、幂函数模型的应用例7(2023高二课时练习)某城市2007年底人口为500万,人均住房面积为,到2017年底该市的人均住房面积翻了一番假定该市人口的年平均增长率为1,求这10年中该市每年新增住房的平均面积(精确到)例8(2023河南高二临颍县第一高级中学校联考阶段练习)研究发现,放射性元素在一定时间内会通过核衰变过程转换成其他元素,放射性水平随着时间的推移而呈指数级下降,已知放射性元素在t时刻的放射性水平满足关系式,其中是初始水平,k为常数(1)若放射性元素X在时的
16、放射性水平是时的,求k的值;(2)设表示放射性元素的放射速率,当放射速率低于时,该元素的放射性水平趋于“绝零”,求使得(1)中放射性元素X的放射性水平趋于“绝零”的最小整数t(参考数据:)例9(2023安徽黄山高一统考期末)近年来,得益于我国先进的运载火箭技术,我国在航天领域取得了巨大成就. 2022年11月29日,神舟十五号载人飞船搭载航天员费俊龙、邓清明、张陆飞往中国空间站,与神舟十四航天员“会师”太空,12月4日晚神舟十四号载人飞船返回舱成功着陆,航天员陈冬、刘洋、蔡旭哲安全顺利出舱,圆满完成飞行任务. 据了解,在不考虑空气阻力和地球引力的理想状态下,可用公式计算火箭的最大速度,其中是喷
17、流相对速度,是火箭(除推进剂外)的质量,是推进剂与火箭质量的总和,称为“总质比”,已知型火箭的喷流相对速度为.(1)当总质比为时,利用给出的参考数据求型火箭的最大速度;(2)经过材料更新和技术改进后,型火箭的喷流相对速度提高到了原来的倍,总质比变为原来的,若要使火箭的最大速度至少增加,求在材料更新和技术改进前总质比的最小整数值.(参考数据:,)【方法技巧与总结】1、涉及平均增长率的问题,求解可用指数型函数模型表示,通常可以表示为(其中N为原来的基础数,p为增长率,x为时间)的形式2、在实际问题中,有关人口增长、银行利率、细胞分裂等增长问题,都常用到指数型函数模型题型四:拟合函数模型的应用问题例
18、10(2023四川成都高一校联考期末)科学实验中,实验员将某种染料倒入装有水的透明水桶,想测试染料的扩散效果,染料在水桶中扩散的速度是先快后慢,1秒后染料扩散的体积是,2秒后染料扩散的体积是,染料扩散的体积y与时间x(单位:秒)的关系有两种函数模型可供选择:,其中m,b均为常数(1)试判断哪个函数模型更合适,并求出该模型的解析式;(2)若染料扩散的体积达到,至少需要多少秒例11(2023广东中山高一统考期中)某家庭进行网上理财投资,根据长期收益率市场预测,投资债券等稳健型产品的年收益与投资额成正比,投资股票等风险型产品的年收益与投资额的算术平方根成正比.已知投资1万元时两类产品的年收益分别为0
19、.125万元和0.5万元(如图).(1)分别写出两种产品的年收益与投资的函数关系式;(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大年收益,其最大年收益是多少万元?例12(2023山西太原高一校考阶段练习)某地为践行绿水青山就是金山银山的理念,大力开展植树造林,假设一片森林原来的面积为亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的2倍时,所用时间是10年(1)求森林面积的年增长率;(2)为使森林面积达到亩至少需要植树造林多少年?(结果精确到1年)(参考数据:,)变式7(2023陕西安康高三校联考阶段练习)某公园池塘里浮萍的面积(单位:)与时间
20、(单位:月)的关系如下表所示:时间月1234浮萍的面积35917现有以下三种函数模型可供选择:,其中均为常数,且.(1)直接选出你认为最符合题意的函数模型,并求出关于的函数解析式;(2)若该公园池塘里浮萍的面积蔓延到所经过的时间分别为,写出一种满足的等量关系式,并说明理由.变式8(2023四川绵阳高二期末)为了改善湖泊的水质,某市环保部门于2021年年终在该湖泊中投入一些浮萍,这些浮萍在水中的繁殖速度越来越快,2022年2月底测得浮萍覆盖面积为,2022年3月底测得浮萍覆盖面积为,浮萍覆盖面积(单位:)与2022年的月份(单位:月)的关系有两个函数模型与可供选择(1)分别求出两个函数模型的解析
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
