《创新设计-课堂讲义》2016-2017学年高中数学北师大版选修1-2练习:第一章 统计案例 1.3 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计-课堂讲义
- 资源描述:
-
1、1.3可线性化的回归分析明目标、知重点1.进一步体会回归分析的基本思想.2.通过非线性回归分析,判断几种不同模型的拟合程度1常见的非线性回归模型幂函数曲线yaxb,指数曲线yaebx.倒指数曲线yae,对数曲线yabln_x.2非线性函数可以通过变换转化成线性函数,得到线性回归方程,再通过相应变换得到非线性回归方程探究点一非线性回归模型思考1有些变量间的关系并不是线性相关,怎样确定回归模型?答首先要作出散点图,如果散点图中的样本点并没有分布在某个带状区域内,则两个变量不呈现线性相关关系,不能直接利用回归方程来建立两个变量之间的关系,这时可以根据已有的函数知识,观察样本点是否呈指数函数关系或二次
2、函数关系,选定适当的回归模型思考2如果两个变量呈现非线性相关关系,怎样求出回归方程?答可以通过对解释变量进行变换,如对数变换或平方变换,先得到另外两个变量间的回归方程,再得到所求两个变量的回归方程例1 某地区不同身高的未成年男性的体重平均值如下表:身高x/cm60708090100110体重y/kg6.137.909.9912.1515.0217.50身高x/cm120130140150160170体重y/kg20.9226.8631.1138.8547.2555.05试建立y与x之间的回归方程解根据表中数据画出散点图如图所示由图看出,样本点分布在某条指数函数曲线yc1ec2x的周围,于是令z
3、ln y.x60708090100110120130140150160170z1.812.072.302.502.712.863.043.293.443.663.864.01画出散点图如图所示由表中数据可得115,2.962 5,iyi4 370.5,173 000,b0.020,ab 0.663,z与x之间的线性回归方程为z0.6630.020x,则有ye0.6630.020x.反思与感悟根据已有的函数知识,可以发现样本分布在某一条指数型函数曲线yc1ec2x的周围,其中c1和c2是待定参数;可以通过对x进行对数变换,转化为线性相关关系跟踪训练1在彩色显影中,由经验知:形成染料光学密度y与析
4、出银的光学密度x由公式yAe (b0且a1)Dylogax(a0且a1)答案A1散点图在回归分析中的作用是()A查找个体个数B比较个体数据大小关系C探究个体分类D粗略判断变量是否相关答案D2变量x与y之间的回归方程表示()Ax与y之间的函数关系Bx与y之间的不确定性关系Cx与y之间的真实关系形式Dx与y之间的真实关系达到最大限度的吻合答案D3变量x,y的散点图如图所示,那么x,y之间的样本相关系数r最接近的值为()A1 B0.5C0 D0.5答案C4某种产品的广告费支出x与销售额y之间有下表关系,现在知道其中一个数据弄错了,则最可能错的数据是_.x/万元24568y/万元3040605070答
5、案(6,50)呈重点、现规律1对于确定具有非线性相关关系的两个变量,可以通过对变量进行变换,转化为线性回归问题去解决建立回归模型的步骤确定研究对象,明确变量关系;画出散点图,观察变量之间的关系;由经验确定回归方程的类型;按一定规则估计回归方程中的参数2常见曲线方程的变换公式曲线方程变换公式变换后的线性方程ay,xyabxyaxbyln y,xln xyAbx(Aln a)yabln xyy,xln xyabxyaebxyln y,xxyAbx(Aln a)一、基础过关1下列说法正确的是()线性回归方程适用于一切样本和总体;线性回归方程一般都有时间性;样本的取值范围会影响线性回归方程的适用范围;
6、根据线性回归方程得到的预测值是预测变量的精确值A B C D答案B2某商品销售量y(件)与销售价格x(元/件)负相关,则其线性回归方程可能是()Ay10x200 By10x200Cy10x200 Dy10x200答案A3在一组样本数据(x1,y1),(x2,y2),(xn,yn)(n2,x1,x2,xn不全相等)的散点图中,若所有样本点(xi,yi)(i1,2,n)都在直线yx1上,则这组样本数据的样本相关系数为()A1 B0 C. D1答案D4某学校开展研究性学习活动,某同学获得一组实验数据如下表:x1.99345.16.12y1.54.047.51218.01对于表中数据,现给出下列拟合曲
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-787694.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2022中考语文 第一部分 古诗文阅读 课题二 文言文阅读 清单六 课内文言文逐篇梳理 九下 26 唐睢不辱使命课件.pptx
