分享
分享赚钱 收藏 举报 版权申诉 / 21

类型专题06 立体几何(解答题)(文科)(解析版).docx

  • 上传人:a****
  • 文档编号:829530
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:21
  • 大小:1.79MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题06 立体几何解答题文科解析版 专题 06 立体几何 解答 文科 解析
    资源描述:

    1、五年(2019-2023)年高考真题分项汇编专题05 立体几何(解答题)立体几何在文科数高考中属于重点知识点,难度中等。解答题主要是求几何体的体积为主,通常采用的方法是换底换高,对于求高题目主要是等体积法的应用。一、解答题1(2023全国统考高考甲卷)如图,在三棱锥中,的中点分别为,点在上,(1)求证:/平面;(2)若,求三棱锥的体积【答案】(1)证明见解析(2)【分析】(1)根据给定条件,证明四边形为平行四边形,再利用线面平行的判定推理作答.(2)作出并证明为棱锥的高,利用三棱锥的体积公式直接可求体积.【详解】(1)连接,设,则,则,解得,则为的中点,由分别为的中点,于是,即,则四边形为平行

    2、四边形,又平面平面,所以平面.(2)过作垂直的延长线交于点,因为是中点,所以,在中,所以,因为,所以,又,平面,所以平面,又平面,所以,又,平面,所以平面,即三棱锥的高为,因为,所以,所以,又,所以.2(2023全国统考高考乙卷)如图,在三棱柱中,平面(1)证明:平面平面;(2)设,求四棱锥的高【答案】(1)证明见解析.(2)【分析】(1)由平面得,又因为,可证平面,从而证得平面平面;(2) 过点作,可证四棱锥的高为,由三角形全等可证,从而证得为中点,设,由勾股定理可求出,再由勾股定理即可求.【详解】(1)证明:因为平面,平面,所以,又因为,即,平面,,所以平面,又因为平面,所以平面平面.(2

    3、)如图,过点作,垂足为.因为平面平面,平面平面,平面,所以平面,所以四棱锥的高为.因为平面,平面,所以,又因为,为公共边,所以与全等,所以.设,则,所以为中点,,又因为,所以,即,解得,所以,所以四棱锥的高为3(2022全国统考高考乙卷题)如图,四面体中,E为AC的中点(1)证明:平面平面ACD;(2)设,点F在BD上,当的面积最小时,求三棱锥的体积【答案】(1)证明详见解析(2)【分析】(1)通过证明平面来证得平面平面.(2)首先判断出三角形的面积最小时点的位置,然后求得到平面的距离,从而求得三棱锥的体积.【详解】(1)由于,是的中点,所以.由于,所以,所以,故,由于,平面,所以平面,由于平

    4、面,所以平面平面.(2)方法一:判别几何关系依题意,三角形是等边三角形,所以,由于,所以三角形是等腰直角三角形,所以.,所以,由于,平面,所以平面.由于,所以,由于,所以,所以,所以,由于,所以当最短时,三角形的面积最小过作,垂足为,在中,解得,所以,所以过作,垂足为,则,所以平面,且,所以,所以.方法二:等体积转换, 是边长为2的等边三角形, 连接4(2022全国统考高考甲卷)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面是边长为8(单位:)的正方形,均为正三角形,且它们所在的平面都与平面垂直(1)证明:平面;(2)求该包装盒的容积(不计包装盒材料的厚度)【答案】(1

    5、)证明见解析;(2)【分析】(1)分别取的中点,连接,由平面知识可知,依题从而可证平面,平面,根据线面垂直的性质定理可知,即可知四边形为平行四边形,于是,最后根据线面平行的判定定理即可证出;(2)再分别取中点,由(1)知,该几何体的体积等于长方体的体积加上四棱锥体积的倍,即可解出【详解】(1)如图所示:分别取的中点,连接,因为为全等的正三角形,所以,又平面平面,平面平面,平面,所以平面,同理可得平面,根据线面垂直的性质定理可知,而,所以四边形为平行四边形,所以,又平面,平面,所以平面(2)方法一:分割法一如图所示:分别取中点,由(1)知,且,同理有,由平面知识可知,所以该几何体的体积等于长方体

    6、的体积加上四棱锥体积的倍因为,点到平面的距离即为点到直线的距离,所以该几何体的体积方法二:分割法二如图所示:连接AC,BD,交于O,连接OE,OF,OG,OH.则该几何体的体积等于四棱锥O-EFGH的体积加上三棱锥A-OEH的倍,再加上三棱锥E-OAB的四倍容易求得,OE=OF=OG=OH=8,取EH的中点P,连接AP,OP.则EH垂直平面APO.由图可知,三角形APO,四棱锥O-EFGH与三棱锥E-OAB的高均为EM的长.所以该几何体的体积5(2021全国统考高考乙卷)如图,四棱锥的底面是矩形,底面,M为的中点,且(1)证明:平面平面;(2)若,求四棱锥的体积【答案】(1)证明见解析;(2)

    7、【分析】(1)由底面可得,又,由线面垂直的判定定理可得平面,再根据面面垂直的判定定理即可证出平面平面;(2)由(1)可知,由平面知识可知,由相似比可求出,再根据四棱锥的体积公式即可求出【详解】(1)因为底面,平面,所以,又,所以平面,而平面,所以平面平面(2)方法一:相似三角形法 由(1)可知于是,故因为,所以,即故四棱锥的体积6(2021全国高考甲卷题)已知直三棱柱中,侧面为正方形,E,F分别为和的中点,.(1)求三棱锥的体积;(2)已知D为棱上的点,证明:.【答案】(1);(2)证明见解析.【分析】(1)先证明为等腰直角三角形,然后利用体积公式可得三棱锥的体积;(2)将所给的几何体进行补形

    8、,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论.【详解】(1)由于,所以,又ABBB1,故平面,则,为等腰直角三角形,.(2)由(1)的结论可将几何体补形为一个棱长为2的正方体,如图所示,取棱的中点,连结,正方形中,为中点,则,又,故平面,而平面,从而.【点睛】求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积对于空间中垂直关系(线线、线面、面面)的证明经常进行等价转化.7(2020全国统考高考卷题)如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,APC=9

    9、0(1)证明:平面PAB平面PAC;(2)设DO=,圆锥的侧面积为,求三棱锥PABC的体积.【答案】(1)证明见解析;(2).【分析】(1)根据已知可得,进而有,可得,即,从而证得平面,即可证得结论;(2)将已知条件转化为母线和底面半径的关系,进而求出底面半径,由正弦定理,求出正三角形边长,在等腰直角三角形中求出,在中,求出,即可求出结论.【详解】(1)连接,为圆锥顶点,为底面圆心,平面,在上,是圆内接正三角形,即,平面平面,平面平面;(2)设圆锥的母线为,底面半径为,圆锥的侧面积为,解得,在等腰直角三角形中,在中,三棱锥的体积为.【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体

    10、的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.8(2020全国统考高考卷)如图,已知三棱柱ABCA1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点过B1C1和P的平面交AB于E,交AC于F(1)证明:AA1/MN,且平面A1AMN平面EB1C1F;(2)设O为A1B1C1的中心,若AO=AB=6,AO/平面EB1C1F,且MPN=,求四棱锥BEB1C1F的体积【答案】(1)证明见解析;(2).【分析】(1)由分别为,的中点,根据条件可得,可证,要证平面平面,只需证明平面即可;(2)根据已知条件求得和到的距

    11、离,根据椎体体积公式,即可求得.【详解】(1)分别为,的中点,又在等边中,为中点,则又侧面为矩形,由,平面平面又,且平面,平面,平面又平面,且平面平面 又平面平面平面平面平面(2)过作垂线,交点为,画出图形,如图平面平面,平面平面又为的中心.故:,则,平面平面,平面平面,平面平面又在等边中即由(1)知,四边形为梯形四边形的面积为:,为到的距离,.【点睛】本题主要考查了证明线线平行和面面垂直,及其求四棱锥的体积,解题关键是掌握面面垂直转为求证线面垂直的证法和棱锥的体积公式,考查了分析能力和空间想象能力,属于中档题.9(2020全国统考高考卷)如图,在长方体中,点,分别在棱,上,且,证明:(1)当

    12、时,;(2)点在平面内【答案】(1)证明见解析;(2)证明见解析.【分析】(1)根据正方形性质得,根据长方体性质得,进而可证平面,即得结果;(2)只需证明即可,在上取点使得,再通过平行四边形性质进行证明即可.【详解】(1)因为长方体,所以平面,因为长方体,所以四边形为正方形因为平面,因此平面,因为平面,所以;(2)在上取点使得,连,因为,所以所以四边形为平行四边形,因为所以四点共面,所以四边形为平行四边形, ,所以四点共面,因此在平面内【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题.10(2019全国统考高考卷)如图,直四棱柱ABCDA1B1C1D1的底面是菱形

    13、,AA1=4,AB=2,BAD=60,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN平面C1DE;(2)求点C到平面C1DE的距离【答案】(1)见解析;(2).【分析】(1)利用三角形中位线和可证得,证得四边形为平行四边形,进而证得,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥的体积,再求出的面积,利用求得点C到平面的距离,得到结果.【详解】(1)连接,分别为,中点为的中位线且又为中点,且 且 四边形为平行四边形,又平面,平面平面(2)在菱形中,为中点,所以,根据题意有,因为棱柱为直棱柱,所以有平面,所以,所以,设点C到平面的距离为,根据题意有,则有,解得,所以点C到

    14、平面的距离为.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.11(2019全国统考高考卷)如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1.(1)证明:BE平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥的体积【答案】(1)见详解;(2)18【分析】(1)先由长方体得,平面,得到,再由,根据线面垂直的判定定理,即可证明结论成立;(2)先设长方体侧棱长为,根据题中条件求出;再

    15、取中点,连结,证明平面,根据四棱锥的体积公式,即可求出结果.【详解】(1)因为在长方体中,平面;平面,所以,又,且平面,平面,所以平面;(2)方法一【利用体积公式计算体积】如图6,设长方体的侧棱长为,则由(1)可得所以,即又,所以,即,解得取中点F,联结,因为,则,所以平面,从而四棱锥的体积:方法二【最优解:利用不同几何体之间体积的比例关系计算体积】取的中点F,联结由()可知,所以故【整体点评】(2)方法一:利用体积公式计算体积需要同时计算底面积和高,是计算体积的传统方法;方法二:利用不同几何体之间的比例关系计算体积是一种方便有效快速的计算体积的方法,核心思想为等价转化.12(2019全国统考

    16、高考卷)图1是由矩形和菱形组成的一个平面图形,其中, ,将其沿折起使得与重合,连结,如图2.(1)证明图2中的四点共面,且平面平面;(2)求图2中的四边形的面积.【答案】(1)见详解;(2)4.【分析】(1)因为折纸和粘合不改变矩形,和菱形内部的夹角,所以,依然成立,又因和粘在一起,所以得证.因为是平面垂线,所以易证.(2) 欲求四边形的面积,需求出所对应的高,然后乘以即可【详解】(1)证:,又因为和粘在一起.,A,C,G,D四点共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得证.(2)取的中点,连结.因为,平面BCGE,所以平面BCGE,故,由已知,四边形BCGE是菱形,且得,

    17、故平面DEM因此在中,DE=1,故所以四边形ACGD的面积为4.【点睛】很新颖的立体几何考题首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的再者粘合后的多面体不是直棱柱,最后将求四边形的面积考查考生的空间想象能力.13(2019北京高考真题)如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.()求证:BD平面PAC;()若ABC=60,求证:平面PAB平面PAE;()棱PB上是否存在点F,使得CF平面PAE?说明理由.【答案】()见解析;()见解析;()见解析.【分析】()由题意利用线面垂直的判定定理即可证得题中的结论;()由几何体的空间结构特征首先证得线面垂直,然后

    18、利用面面垂直的判断定理可得面面垂直;()由题意,利用平行四边形的性质和线面平行的判定定理即可找到满足题意的点.【详解】()证明:因为平面,所以;因为底面是菱形,所以;因为,平面,所以平面.()证明:因为底面是菱形且,所以为正三角形,所以,因为,所以;因为平面,平面,所以;因为所以平面,平面,所以平面平面.()存在点为中点时,满足平面;理由如下:分别取的中点,连接,在三角形中,且;在菱形中,为中点,所以且,所以且,即四边形为平行四边形,所以;又平面,平面,所以平面.【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.14(

    19、2019天津高考真题) 如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,()设分别为的中点,求证:平面;()求证:平面;()求直线与平面所成角的正弦值.【答案】(I)见解析;(II)见解析;(III).【分析】(I)连接,结合平行四边形的性质,以及三角形中位线的性质,得到,利用线面平行的判定定理证得结果;(II)取棱的中点,连接,依题意,得,结合面面垂直的性质以及线面垂直的性质得到,利用线面垂直的判定定理证得结果;(III)利用线面角的平面角的定义得到为直线与平面所成的角,放在直角三角形中求得结果.【详解】(I)证明:连接,易知,又由,故,又因为平面,平面,所以平面.(II)证明:取棱的中点,连接,依题意,得,又因为平面平面,平面平面,所以平面,又平面,故,

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题06 立体几何(解答题)(文科)(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-829530.html
    相关资源 更多
  • 化学反应与能量章末复习学案.docx化学反应与能量章末复习学案.docx
  • 化学反应与能量思维导图-【口袋书】2023年高中化学复习思维导图(新教材专用).docx化学反应与能量思维导图-【口袋书】2023年高中化学复习思维导图(新教材专用).docx
  • 化学参考答案及评分标准.docx化学参考答案及评分标准.docx
  • 化学参考答案.docx化学参考答案.docx
  • 化学参考答案(1).docx化学参考答案(1).docx
  • 化学参考答案(02).docx化学参考答案(02).docx
  • 化学参考答案(01).docx化学参考答案(01).docx
  • 化学参答.docx化学参答.docx
  • 化学危险品安全控制措施.docx化学危险品安全控制措施.docx
  • 化学危险品仓库安全检查技术.docx化学危险品仓库安全检查技术.docx
  • 化学单元检测试题.docx化学单元检测试题.docx
  • 化学单元检测答案.docx化学单元检测答案.docx
  • 化学元素快速记忆方法.docx化学元素快速记忆方法.docx
  • 化学人教版选修4自我小测:第二章第三节化学平衡 Word版含解析.docx化学人教版选修4自我小测:第二章第三节化学平衡 Word版含解析.docx
  • 化学人教版九年级上册7.1燃烧与灭火初探教案.docx化学人教版九年级上册7.1燃烧与灭火初探教案.docx
  • 化学人教版九年级上册7.1燃烧与灭火 导学案(无答案).docx化学人教版九年级上册7.1燃烧与灭火 导学案(无答案).docx
  • 化学人教必修一第三章第二节1铝元素单质及其化合物.docx化学人教必修一第三章第二节1铝元素单质及其化合物.docx
  • 化学人教九年级上册第四单元课题2《水的净化》教案.docx化学人教九年级上册第四单元课题2《水的净化》教案.docx
  • 化学人教九年级上册第四单元课题1《爱护水资源》教案.docx化学人教九年级上册第四单元课题1《爱护水资源》教案.docx
  • 化学二摸定稿答案.docx化学二摸定稿答案.docx
  • 化学九年级讲讲义(pdf版).docx化学九年级讲讲义(pdf版).docx
  • 化学九年级科粤版复习《溶液》教案.docx化学九年级科粤版复习《溶液》教案.docx
  • 化学九年级科粤版5.3二氧化碳的性质与制取教案.docx化学九年级科粤版5.3二氧化碳的性质与制取教案.docx
  • 化学九年级科粤版 8.2 常见的酸和碱 第2课时 说课稿.docx化学九年级科粤版 8.2 常见的酸和碱 第2课时 说课稿.docx
  • 化学九年级科粤版 2.4辨别物质的元素组成教案.docx化学九年级科粤版 2.4辨别物质的元素组成教案.docx
  • 化学九年级沪教版第一节常见化学反应燃烧 教学设计.docx化学九年级沪教版第一节常见化学反应燃烧 教学设计.docx
  • 化学九年级沪教版 第三节 怎样学习和研究化学练习题.docx化学九年级沪教版 第三节 怎样学习和研究化学练习题.docx
  • 化学九年级沪教版 第一章 开启化学之门第二节 化学研究些什么教案.docx化学九年级沪教版 第一章 开启化学之门第二节 化学研究些什么教案.docx
  • 化学九年级沪教版 第一章 开启化学之门第一节化学给我们带来什么教案.docx化学九年级沪教版 第一章 开启化学之门第一节化学给我们带来什么教案.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1