专题06 立体几何(解答题)(文科)(解析版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题06 立体几何解答题文科解析版 专题 06 立体几何 解答 文科 解析
- 资源描述:
-
1、五年(2019-2023)年高考真题分项汇编专题05 立体几何(解答题)立体几何在文科数高考中属于重点知识点,难度中等。解答题主要是求几何体的体积为主,通常采用的方法是换底换高,对于求高题目主要是等体积法的应用。一、解答题1(2023全国统考高考甲卷)如图,在三棱锥中,的中点分别为,点在上,(1)求证:/平面;(2)若,求三棱锥的体积【答案】(1)证明见解析(2)【分析】(1)根据给定条件,证明四边形为平行四边形,再利用线面平行的判定推理作答.(2)作出并证明为棱锥的高,利用三棱锥的体积公式直接可求体积.【详解】(1)连接,设,则,则,解得,则为的中点,由分别为的中点,于是,即,则四边形为平行
2、四边形,又平面平面,所以平面.(2)过作垂直的延长线交于点,因为是中点,所以,在中,所以,因为,所以,又,平面,所以平面,又平面,所以,又,平面,所以平面,即三棱锥的高为,因为,所以,所以,又,所以.2(2023全国统考高考乙卷)如图,在三棱柱中,平面(1)证明:平面平面;(2)设,求四棱锥的高【答案】(1)证明见解析.(2)【分析】(1)由平面得,又因为,可证平面,从而证得平面平面;(2) 过点作,可证四棱锥的高为,由三角形全等可证,从而证得为中点,设,由勾股定理可求出,再由勾股定理即可求.【详解】(1)证明:因为平面,平面,所以,又因为,即,平面,,所以平面,又因为平面,所以平面平面.(2
3、)如图,过点作,垂足为.因为平面平面,平面平面,平面,所以平面,所以四棱锥的高为.因为平面,平面,所以,又因为,为公共边,所以与全等,所以.设,则,所以为中点,,又因为,所以,即,解得,所以,所以四棱锥的高为3(2022全国统考高考乙卷题)如图,四面体中,E为AC的中点(1)证明:平面平面ACD;(2)设,点F在BD上,当的面积最小时,求三棱锥的体积【答案】(1)证明详见解析(2)【分析】(1)通过证明平面来证得平面平面.(2)首先判断出三角形的面积最小时点的位置,然后求得到平面的距离,从而求得三棱锥的体积.【详解】(1)由于,是的中点,所以.由于,所以,所以,故,由于,平面,所以平面,由于平
4、面,所以平面平面.(2)方法一:判别几何关系依题意,三角形是等边三角形,所以,由于,所以三角形是等腰直角三角形,所以.,所以,由于,平面,所以平面.由于,所以,由于,所以,所以,所以,由于,所以当最短时,三角形的面积最小过作,垂足为,在中,解得,所以,所以过作,垂足为,则,所以平面,且,所以,所以.方法二:等体积转换, 是边长为2的等边三角形, 连接4(2022全国统考高考甲卷)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面是边长为8(单位:)的正方形,均为正三角形,且它们所在的平面都与平面垂直(1)证明:平面;(2)求该包装盒的容积(不计包装盒材料的厚度)【答案】(1
5、)证明见解析;(2)【分析】(1)分别取的中点,连接,由平面知识可知,依题从而可证平面,平面,根据线面垂直的性质定理可知,即可知四边形为平行四边形,于是,最后根据线面平行的判定定理即可证出;(2)再分别取中点,由(1)知,该几何体的体积等于长方体的体积加上四棱锥体积的倍,即可解出【详解】(1)如图所示:分别取的中点,连接,因为为全等的正三角形,所以,又平面平面,平面平面,平面,所以平面,同理可得平面,根据线面垂直的性质定理可知,而,所以四边形为平行四边形,所以,又平面,平面,所以平面(2)方法一:分割法一如图所示:分别取中点,由(1)知,且,同理有,由平面知识可知,所以该几何体的体积等于长方体
6、的体积加上四棱锥体积的倍因为,点到平面的距离即为点到直线的距离,所以该几何体的体积方法二:分割法二如图所示:连接AC,BD,交于O,连接OE,OF,OG,OH.则该几何体的体积等于四棱锥O-EFGH的体积加上三棱锥A-OEH的倍,再加上三棱锥E-OAB的四倍容易求得,OE=OF=OG=OH=8,取EH的中点P,连接AP,OP.则EH垂直平面APO.由图可知,三角形APO,四棱锥O-EFGH与三棱锥E-OAB的高均为EM的长.所以该几何体的体积5(2021全国统考高考乙卷)如图,四棱锥的底面是矩形,底面,M为的中点,且(1)证明:平面平面;(2)若,求四棱锥的体积【答案】(1)证明见解析;(2)
7、【分析】(1)由底面可得,又,由线面垂直的判定定理可得平面,再根据面面垂直的判定定理即可证出平面平面;(2)由(1)可知,由平面知识可知,由相似比可求出,再根据四棱锥的体积公式即可求出【详解】(1)因为底面,平面,所以,又,所以平面,而平面,所以平面平面(2)方法一:相似三角形法 由(1)可知于是,故因为,所以,即故四棱锥的体积6(2021全国高考甲卷题)已知直三棱柱中,侧面为正方形,E,F分别为和的中点,.(1)求三棱锥的体积;(2)已知D为棱上的点,证明:.【答案】(1);(2)证明见解析.【分析】(1)先证明为等腰直角三角形,然后利用体积公式可得三棱锥的体积;(2)将所给的几何体进行补形
8、,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论.【详解】(1)由于,所以,又ABBB1,故平面,则,为等腰直角三角形,.(2)由(1)的结论可将几何体补形为一个棱长为2的正方体,如图所示,取棱的中点,连结,正方形中,为中点,则,又,故平面,而平面,从而.【点睛】求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积对于空间中垂直关系(线线、线面、面面)的证明经常进行等价转化.7(2020全国统考高考卷题)如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,APC=9
9、0(1)证明:平面PAB平面PAC;(2)设DO=,圆锥的侧面积为,求三棱锥PABC的体积.【答案】(1)证明见解析;(2).【分析】(1)根据已知可得,进而有,可得,即,从而证得平面,即可证得结论;(2)将已知条件转化为母线和底面半径的关系,进而求出底面半径,由正弦定理,求出正三角形边长,在等腰直角三角形中求出,在中,求出,即可求出结论.【详解】(1)连接,为圆锥顶点,为底面圆心,平面,在上,是圆内接正三角形,即,平面平面,平面平面;(2)设圆锥的母线为,底面半径为,圆锥的侧面积为,解得,在等腰直角三角形中,在中,三棱锥的体积为.【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
四年级下册语文课件-第10课 公仪休拒收礼物课后作业(b组)∣苏教版 (共17张PPT).ppt
