分享
分享赚钱 收藏 举报 版权申诉 / 54

类型专题08 平面解析几何(解答题)(教师版).docx

  • 上传人:a****
  • 文档编号:830137
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:54
  • 大小:2.63MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题08 平面解析几何解答题教师版 专题 08 平面 解析几何 解答 教师版
    资源描述:

    1、专题08 平面解析几何(解答题)1【2022年全国甲卷】设抛物线C:y2=2px(p0)的焦点为F,点Dp,0,过F的直线交C于M,N两点当直线MD垂直于x轴时,MF=3(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为,当-取得最大值时,求直线AB的方程【答案】(1)y2=4x;(2)AB:x=2y+4.【解析】【分析】(1)由抛物线的定义可得|MF|=p+p2,即可得解;(2)设点的坐标及直线MN:x=my+1,由韦达定理及斜率公式可得kMN=2kAB,再由差角的正切公式及基本不等式可得kAB=22,设直线AB:x=2y+n,结合韦达定理可

    2、解.(1)抛物线的准线为x=-p2,当MD与x轴垂直时,点M的横坐标为p,此时|MF|=p+p2=3,所以p=2,所以抛物线C的方程为y2=4x;(2)设M(y124,y1),N(y224,y2),A(y324,y3),B(y424,y4),直线MN:x=my+1,由x=my+1y2=4x可得y2-4my-4=0,0,y1y2=-4,由斜率公式可得kMN=y1-y2y124-y224=4y1+y2,kAB=y3-y4y324-y424=4y3+y4,直线MD:x=x1-2y1y+2,代入抛物线方程可得y2-4(x1-2)y1y-8=0,0,y1y3=-8,所以y3=2y2,同理可得y4=2y1

    3、,所以kAB=4y3+y4=42(y1+y2)=kMN2又因为直线MN、AB的倾斜角分别为,,所以kAB=tan=kMN2=tan2,若要使-最大,则(0,2),设kMN=2kAB=2k0,则tan(-)=tan-tan1+tantan=k1+2k2=11k+2k121k2k=24,当且仅当1k=2k即k=22时,等号成立,所以当-最大时,kAB=22,设直线AB:x=2y+n,代入抛物线方程可得y2-42y-4n=0,0,y3y4=-4n=4y1y2=-16,所以n=4,所以直线AB:x=2y+4.【点睛】关键点点睛:解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系

    4、.2【2022年全国乙卷】已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过A0,-2,B32,-1两点(1)求E的方程;(2)设过点P1,-2的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足MT=TH证明:直线HN过定点【答案】(1)y24+x23=1(2)(0,-2)【解析】【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C的方程联立,分情况讨论斜率是否存在,即可得解.(1)解:设椭圆E的方程为mx2+ny2=1,过A0,-2,B32,-1,则4n=194m+n=1,解得m=13,n=14,所以椭圆E的方程为:y24+x23=1.(2)A

    5、(0,-2),B(32,-1),所以AB:y+2=23x,若过点P(1,-2)的直线斜率不存在,直线x=1.代入x23+y24=1,可得M(1,263),N(1,-263),代入AB方程y=23x-2,可得T(6+3,263),由MT=TH得到H(26+5,263).求得HN方程:y=(2-263)x-2,过点(0,-2).若过点P(1,-2)的直线斜率存在,设kx-y-(k+2)=0,M(x1,y1),N(x2,y2).联立kx-y-(k+2)=0x23+y24=1,得(3k2+4)x2-6k(2+k)x+3k(k+4)=0,可得x1+x2=6k(2+k)3k2+4x1x2=3k(4+k)3

    6、k2+4,y1+y2=-8(2+k)3k2+4y2y2=4(4+4k-2k2)3k2+4,且x1y2+x2y1=-24k3k2+4(*)联立y=y1y=23x-2,可得T(3y12+3,y1),H(3y1+6-x1,y1).可求得此时HN:y-y2=y1-y23y1+6-x1-x2(x-x2),将(0,-2),代入整理得2(x1+x2)-6(y1+y2)+x1y2+x2y1-3y1y2-12=0,将(*)代入,得24k+12k2+96+48k-24k-48-48k+24k2-36k2-48=0,显然成立,综上,可得直线HN过定点(0,-2).【点睛】求定点、定值问题常见的方法有两种:从特殊入手

    7、,求出定值,再证明这个值与变量无关;直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.3【2022年新高考1卷】已知点A(2,1)在双曲线C:x2a2-y2a2-1=1(a1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0(1)求l的斜率;(2)若tanPAQ=22,求PAQ的面积【答案】(1)-1;(2)1629【解析】【分析】(1)由点A(2,1)在双曲线上可求出a,易知直线l的斜率存在,设l:y=kx+m,Px1,y1,Qx2,y2,再根据kAP+kBP=0,即可解出l的斜率;(2)根据直线AP,AQ的斜率之和为0可知直线AP,AQ的倾斜角互补,再根据tanPAQ=2

    8、2即可求出直线AP,AQ的斜率,再分别联立直线AP,AQ与双曲线方程求出点P,Q的坐标,即可得到直线PQ的方程以及PQ的长,由点到直线的距离公式求出点A到直线PQ的距离,即可得出PAQ的面积(1)因为点A(2,1)在双曲线C:x2a2-y2a2-1=1(a1)上,所以4a2-1a2-1=1,解得a2=2,即双曲线C:x22-y2=1易知直线l的斜率存在,设l:y=kx+m,Px1,y1,Qx2,y2,联立y=kx+mx22-y2=1可得,1-2k2x2-4mkx-2m2-2=0,所以,x1+x2=-4mk2k2-1,x1x2=2m2+22k2-1,=16m2k2+42m2+22k2-10m2-

    9、1+2k20所以由kAP+kBP=0可得,y2-1x2-2+y1-1x1-2=0,即x1-2kx2+m-1+x2-2kx1+m-1=0,即2kx1x2+m-1-2kx1+x2-4m-1=0,所以2k2m2+22k2-1+m-1-2k-4mk2k2-1-4m-1=0,化简得,8k2+4k-4+4mk+1=0,即k+12k-1+m=0,所以k=-1或m=1-2k,当m=1-2k时,直线l:y=kx+m=kx-2+1过点A2,1,与题意不符,舍去,故k=-1(2)不妨设直线PA,PB的倾斜角为,0,b0)的右焦点为F(2,0),渐近线方程为y=3x(1)求C的方程;(2)过F的直线与C的两条渐近线分

    10、别交于A,B两点,点Px1,y1,Qx2,y2在C上,且x1x20,y10过P且斜率为-3的直线与过Q且斜率为3的直线交于点M.从下面中选取两个作为条件,证明另外一个成立:M在AB上;PQAB;|MA|=|MB|注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x2-y23=1(2)见解析【解析】【分析】(1)利用焦点坐标求得c的值,利用渐近线方程求得a,b的关系,进而利用a,b,c的平方关系求得a,b的值,得到双曲线的方程;(2)先分析得到直线AB的斜率存在且不为零,设直线AB的斜率为k, M(x0,y0),由|AM|=|BM|等价分析得到x0+ky0=8k2k2-3;由直线P

    11、M和QM的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ的斜率m=3x0y0,由PQ/AB等价转化为ky0=3x0,由M在直线AB上等价于ky0=k2x0-2,然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为F(2,0),c=2,渐近线方程为y=3x,ba=3,b=3a,c2=a2+b2=4a2=4,a=1,b=3C的方程为:x2-y23=1;(2)由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由推或选由推:由成立可知直线AB的斜率存在且不为零;若选推,则M为线段AB的中点,假若直线AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F

    12、,此时由对称性可知P、Q关于x轴对称,与从而x1=x2,已知不符;总之,直线AB的斜率存在且不为零.设直线AB的斜率为k,直线AB方程为y=k(x-2),则条件M在AB上,等价于y0=kx0-2ky0=k2x0-2;两渐近线的方程合并为3x2-y2=0,联立消去y并化简整理得:k2-3x2-4k2x+4k2=0设A(x3,y3),B(x3,y4),线段中点为N(xN,yN),则xN=x3+x42=2k2k2-3,yN=kxN-2=6kk2-3,设M(x0,y0),则条件|AM|=|BM|等价于x0-x32+y0-y32=x0-x42+y0-y42,移项并利用平方差公式整理得:x3-x42x0-

    13、x3+x4+y3-y42y0-y3+y4=0,2x0-x3+x4+y3-y4x3-x42y0-y3+y4=0,即x0-xN+ky0-yN=0,即x0+ky0=8k2k2-3;由题意知直线PM的斜率为-3, 直线QM的斜率为3,由y1-y0=-3x1-x0,y2-y0=3(x2-x0),y1-y2=-3(x1+x2-2x0),所以直线PQ的斜率m=y1-y2x1-x2=-3x1+x2-2x0x1-x2,直线PM:y=-3x-x0+y0,即y=y0+3x0-3x,代入双曲线的方程3x2-y2-3=0,即3x+y3x-y=3中,得:y0+3x023x-y0+3x0=3,解得P的横坐标:x1=1233

    14、y0+3x0+y0+3x0,同理:x2=-1233y0-3x0+y0-3x0,x1-x2=133y0y02-3x02+y0,x1+x2-2x0=-3x0y02-3x02-x0,m=3x0y0,条件PQ/AB等价于m=kky0=3x0,综上所述:条件M在AB上,等价于ky0=k2x0-2;条件PQ/AB等价于ky0=3x0;条件|AM|=|BM|等价于x0+ky0=8k2k2-3;选推:由解得:x0=2k2k2-3,x0+ky0=4x0=8k2k2-3,成立;选推:由解得:x0=2k2k2-3,ky0=6k2k2-3,ky0=3x0,成立;选推:由解得:x0=2k2k2-3,ky0=6k2k2-

    15、3,x0-2=6k2-3,ky0=k2x0-2,成立.5【2021年甲卷文科】抛物线C的顶点为坐标原点O焦点在x轴上,直线l:交C于P,Q两点,且已知点,且与l相切(1)求C,的方程;(2)设是C上的三个点,直线,均与相切判断直线与的位置关系,并说明理由【答案】(1)抛物线,方程为;(2)相切,理由见解析【解析】【分析】(1)根据已知抛物线与相交,可得出抛物线开口向右,设出标准方程,再利用对称性设出坐标,由,即可求出;由圆与直线相切,求出半径,即可得出结论;(2)方法一:先考虑斜率不存在,根据对称性,即可得出结论;若斜率存在,由三点在抛物线上,将直线斜率分别用纵坐标表示,再由与圆相切,得出与的

    16、关系,最后求出点到直线的距离,即可得出结论.【详解】(1)依题意设抛物线,所以抛物线的方程为,与相切,所以半径为,所以的方程为;(2)方法一:设若斜率不存在,则方程为或,若方程为,根据对称性不妨设,则过与圆相切的另一条直线方程为,此时该直线与抛物线只有一个交点,即不存在,不合题意;若方程为,根据对称性不妨设则过与圆相切的直线为,又,此时直线关于轴对称,所以直线与圆相切;若直线斜率均存在,则,所以直线方程为,整理得,同理直线的方程为,直线的方程为,与圆相切,整理得,与圆相切,同理所以为方程的两根,到直线的距离为:,所以直线与圆相切;综上若直线与圆相切,则直线与圆相切.方法二【最优解】:设当时,同

    17、解法1当时,直线的方程为,即由直线与相切得,化简得,同理,由直线与相切得因为方程同时经过点,所以的直线方程为,点M到直线距离为所以直线与相切综上所述,若直线与相切,则直线与相切【整体点评】第二问关键点:过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;法一是要充分利用的对称性,抽象出与关系,把的关系转化为用表示,法二是利用相切等条件得到的直线方程为,利用点到直线距离进行证明,方法二更为简单,开拓学生思路6【2021年乙卷文科】已知抛物线的焦点F到准线的距离为2(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率的最大值.【答案

    18、】(1);(2)最大值为.【解析】【分析】(1)由抛物线焦点与准线的距离即可得解;(2)设,由平面向量的知识可得,进而可得,再由斜率公式及基本不等式即可得解.【详解】(1)抛物线的焦点,准线方程为,由题意,该抛物线焦点到准线的距离为,所以该抛物线的方程为;(2)方法一:轨迹方程+基本不等式法设,则,所以,由在抛物线上可得,即,据此整理可得点的轨迹方程为,所以直线的斜率,当时,;当时,当时,因为,此时,当且仅当,即时,等号成立;当时,;综上,直线的斜率的最大值为.方法二:【最优解】轨迹方程+数形结合法同方法一得到点Q的轨迹方程为设直线的方程为,则当直线与抛物线相切时,其斜率k取到最值联立得,其判

    19、别式,解得,所以直线斜率的最大值为方法三:轨迹方程+换元求最值法同方法一得点Q的轨迹方程为设直线的斜率为k,则令,则的对称轴为,所以故直线斜率的最大值为方法四:参数+基本不等式法由题可设因为,所以于是,所以则直线的斜率为当且仅当,即时等号成立,所以直线斜率的最大值为【整体点评】方法一根据向量关系,利用代点法求得Q的轨迹方程,得到直线OQ的斜率关于的表达式,然后利用分类讨论,结合基本不等式求得最大值;方法二 同方法一得到点Q的轨迹方程,然后利用数形结合法,利用判别式求得直线OQ的斜率的最大值,为最优解;方法三同方法一求得Q的轨迹方程,得到直线的斜率k的平方关于的表达式,利用换元方法转化为二次函数

    20、求得最大值,进而得到直线斜率的最大值;方法四利用参数法,由题可设,求得x,y关于的参数表达式,得到直线的斜率关于的表达式,结合使用基本不等式,求得直线斜率的最大值. 7【2021年乙卷理科】已知抛物线的焦点为,且与圆上点的距离的最小值为(1)求;(2)若点在上,是的两条切线,是切点,求面积的最大值【答案】(1);(2).【解析】【分析】(1)根据圆的几何性质可得出关于的等式,即可解出的值;(2)设点、,利用导数求出直线、,进一步可求得直线的方程,将直线的方程与抛物线的方程联立,求出以及点到直线的距离,利用三角形的面积公式结合二次函数的基本性质可求得面积的最大值.【详解】(1)方法一:利用二次函

    21、数性质求最小值由题意知,设圆M上的点,则所以从而有因为,所以当时,又,解之得,因此方法二【最优解】:利用圆的几何意义求最小值抛物线的焦点为,所以,与圆上点的距离的最小值为,解得;(2)方法一:切点弦方程+韦达定义判别式求弦长求面积法抛物线的方程为,即,对该函数求导得,设点、,直线的方程为,即,即,同理可知,直线的方程为,由于点为这两条直线的公共点,则,所以,点A、的坐标满足方程,所以,直线的方程为,联立,可得,由韦达定理可得,所以,点到直线的距离为,所以,由已知可得,所以,当时,的面积取最大值.方法二【最优解】:切点弦法+分割转化求面积+三角换元求最值 同方法一得到过P作y轴的平行线交于Q,则

    22、P点在圆M上,则故当时的面积最大,最大值为方法三:直接设直线AB方程法设切点A,B的坐标分别为,设,联立和抛物线C的方程得整理得判别式,即,且抛物线C的方程为,即,有则,整理得,同理可得联立方程可得点P的坐标为,即将点P的坐标代入圆M的方程,得,整理得由弦长公式得点P到直线的距离为所以,其中,即当时,【整体点评】(1)方法一利用两点间距离公式求得关于圆M上的点的坐标的表达式,进一步转化为关于的表达式,利用二次函数的性质得到最小值,进而求得的值;方法二,利用圆的性质,与圆上点的距离的最小值,简洁明快,为最优解;(2)方法一设点、,利用导数求得两切线方程,由切点弦方程思想得到直线的坐标满足方程,然

    23、手与抛物线方程联立,由韦达定理可得,利用弦长公式求得的长,进而得到面积关于坐标的表达式,利用圆的方程转化得到关于的二次函数最值问题;方法二,同方法一得到,过P作y轴的平行线交于Q,则由求得面积关于坐标的表达式,并利用三角函数换元求得面积最大值,方法灵活,计算简洁,为最优解;方法三直接设直线,联立直线和抛物线方程,利用韦达定理判别式得到,且利用点在圆上,求得的关系,然后利用导数求得两切线方程,解方程组求得P的坐标,进而利用弦长公式和点到直线距离公式求得面积关于的函数表达式,然后利用二次函数的性质求得最大值;8【2021年新高考1卷】在平面直角坐标系中,已知点、,点的轨迹为.(1)求的方程;(2)

    24、设点在直线上,过的两条直线分别交于、两点和,两点,且,求直线的斜率与直线的斜率之和.【答案】(1);(2).【解析】【分析】(1) 利用双曲线的定义可知轨迹是以点、为左、右焦点双曲线的右支,求出、的值,即可得出轨迹的方程; (2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C的方程,结合韦达定理求得直线的斜率,最后化简计算可得的值.【详解】(1) 因为,所以,轨迹是以点、为左、右焦点的双曲线的右支,设轨迹的方程为,则,可得,所以,轨迹的方程为.(2)方法一 【最优解】:直线方程与双曲线方程联立如图所示,设,设直线的方程为联立,化简得.则故则设的方程为,同理因为,所以,化简得,所以,即因为

    25、,所以方法二 :参数方程法设设直线的倾斜角为,则其参数方程为,联立直线方程与曲线C的方程,可得,整理得设,由根与系数的关系得设直线的倾斜角为,同理可得由,得因为,所以由题意分析知所以,故直线的斜率与直线的斜率之和为0方法三:利用圆幂定理因为,由圆幂定理知A,B,P,Q四点共圆设,直线的方程为,直线的方程为,则二次曲线又由,得过A,B,P,Q四点的二次曲线系方程为:,整理可得:,其中由于A,B,P,Q四点共圆,则xy项的系数为0,即.【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解;方法二:参

    26、数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.9【2021年新高考2卷】已知椭圆C的方程为,右焦点为,且离心率为(1)求椭圆C的方程;(2)设M,N是椭圆C上的两点,直线与曲线相切证明:M,N,F三点共线的充要条件是【答案】(1);(2)证明见解析.【解析】【分析】(1)由离心率公式可得,进而可得,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证;充分性:设直线,由直线与圆相切得,联立直线与椭圆方程结合弦长公式可得,进而可得,即

    27、可得解.【详解】(1)由题意,椭圆半焦距且,所以,又,所以椭圆方程为;(2)由(1)得,曲线为,当直线的斜率不存在时,直线,不合题意;当直线的斜率存在时,设,必要性:若M,N,F三点共线,可设直线即,由直线与曲线相切可得,解得,联立可得,所以,所以,所以必要性成立;充分性:设直线即,由直线与曲线相切可得,所以,联立可得,所以,所以,化简得,所以,所以或,所以直线或,所以直线过点,M,N,F三点共线,充分性成立;所以M,N,F三点共线的充要条件是【点睛】关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.10【2020年新课标1卷理科】已知A、B

    28、分别为椭圆E:(a1)的左、右顶点,G为E的上顶点,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D(1)求E的方程;(2)证明:直线CD过定点.【答案】(1);(2)证明详见解析.【解析】【分析】(1)由已知可得:, ,即可求得,结合已知即可求得:,问题得解.(2)方法一:设,可得直线的方程为:,联立直线的方程与椭圆方程即可求得点的坐标为,同理可得点的坐标为,当时,可表示出直线的方程,整理直线的方程可得:即可知直线过定点,当时,直线:,直线过点,命题得证.【详解】(1)依据题意作出如下图象:由椭圆方程可得:, ,椭圆方程为:(2)方法一:设而求点法证明:设,则直线的方程

    29、为:,即:联立直线的方程与椭圆方程可得:,整理得:,解得:或将代入直线可得:所以点的坐标为.同理可得:点的坐标为当时,直线的方程为:,整理可得:整理得:所以直线过定点当时,直线:,直线过点故直线CD过定点方法二【最优解】:数形结合 设,则直线的方程为,即同理,可求直线的方程为则经过直线和直线的方程可写为可化为易知A,B,C,D四个点满足上述方程,同时A,B,C,D又在椭圆上,则有,代入式可得故,可得或其中表示直线,则表示直线令,得,即直线恒过点【整体点评】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.第二问的方法一最直接,但对运算能力要求严格;方法

    30、二曲线系的应用更多的体现了几何与代数结合的思想,二次曲线系的应用使得计算更为简单.11【2020年新课标2卷理科】已知椭圆C1:(ab0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.【答案】(1);(2),.【解析】【分析】(1)求出、,利用可得出关于、的齐次等式,可解得椭圆的离心率的值;(2)方法四由(1)可得出的方程为,联立曲线与的方程,求出点的坐标,利用抛物线的定义结合可求得的值,进而可得出与的

    31、标准方程.【详解】(1),轴且与椭圆相交于、两点,则直线的方程为,联立,解得,则,抛物线的方程为,联立,解得,即,即,即,解得,因此,椭圆的离心率为;(2)方法一:椭圆的第二定义由椭圆的第二定义知,则有,所以,即又由,得从而,解得所以故椭圆与抛物线的标准方程分别是方法二:圆锥曲线统一的极坐标公式以为极点,x轴的正半轴为极轴,建立极坐标系由()知,又由圆锥曲线统一的极坐标公式,得,由,得,两式联立解得故的标准方程为,的标准方程为方法三:参数方程由(1)知,椭圆的方程为,所以的参数方程为x=2ccos,y=3csin(为参数),将它代入抛物线的方程并化简得,解得或(舍去),所以,即点M的坐标为又,

    32、所以由抛物线焦半径公式有,即,解得故的标准方程为,的标准方程为方法四【最优解】:利用韦达定理由(1)知,椭圆的方程为,联立,消去并整理得,解得或(舍去),由抛物线的定义可得,解得.因此,曲线的标准方程为,曲线的标准方程为.【整体点评】(2)方法一:椭圆的第二定义是联系准线与离心率的重要工具,涉及离心率的问题不妨考虑使用第二定义,很多时候会使得问题简单明了.方法二:圆锥曲线统一的极坐标公式充分体现了圆锥曲线的统一特征,同时它也是解决圆锥曲线问题的一个不错的思考方向.方法三:参数方程是一种重要的数学工具,它将圆锥曲线的问题转化为三角函数的问题,使得原来抽象的问题更加具体化.方法四:韦达定理是最常用

    33、的处理直线与圆锥曲线位置关系的方法,联立方程之后充分利用韦达定理可以达到设而不求的效果.12【2020年新课标2卷文科】已知椭圆C1:(ab0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程【答案】(1);(2):,: .【解析】【分析】(1)根据题意求出的方程,结合椭圆和抛物线的对称性不妨设在第一象限,运用代入法求出点的纵坐标,根据,结合椭圆离心率的公式进行求解即可;(2)由(1)可以得到椭圆的标准方程,

    34、确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可;【详解】解:(1)因为椭圆的右焦点坐标为:,所以抛物线的方程为,其中.不妨设在第一象限,因为椭圆的方程为:,所以当时,有,因此的纵坐标分别为,;又因为抛物线的方程为,所以当时,有,所以的纵坐标分别为,故,.由得,即,解得(舍去),.所以的离心率为.(2)由(1)知,故,所以的四个顶点坐标分别为,的准线为.由已知得,即.所以的标准方程为,的标准方程为.【点睛】本题考查了求椭圆的离心率,考查了求椭圆和抛物线的标准方程,考查了椭圆的四个顶点的坐标以及抛物线的准线方程,考查了数学运算能力.13【2020年新课标3卷理科】已知椭圆

    35、的离心率为,分别为的左、右顶点(1)求的方程;(2)若点在上,点在直线上,且,求的面积【答案】(1);(2).【解析】【分析】(1)因为,可得,根据离心率公式,结合已知,即可求得答案;(2)方法一:过点作轴垂线,垂足为,设与轴交点为,可得 ,可求得点坐标,从而求出直线的直线方程,根据点到直线距离公式和两点距离公式,即可求得的面积.【详解】(1),根据离心率,解得或(舍),的方程为:,即(2)方法一:通性通法不妨设,在x轴上方,过点作轴垂线,垂足为,设直线与轴交点为根据题意画出图形,如图, ,又, ,根据三角形全等条件“”,可得:,设点为,可得点纵坐标为,将其代入,可得:,解得:或,点为或,当点

    36、为时,故,可得:点为,画出图象,如图, ,可求得直线的直线方程为:,根据点到直线距离公式可得到直线的距离为,根据两点间距离公式可得:,面积为:;当点为时,故,可得:点为,画出图象,如图, ,可求得直线的直线方程为:,根据点到直线距离公式可得到直线的距离为,根据两点间距离公式可得:,面积为: ,综上所述,面积为:.方法二【最优解】:由对称性,不妨设P,Q在x轴上方,过P作轴,垂足为E设,由题知,故,因为,如图,所以,因为,如图,所以 综上有方法三:由已知可得,直线的斜率一定存在,设直线的方程为,由对称性可设,联立方程消去y得,由韦达定理得,所以,将其代入直线的方程得,所以,则因为,则直线的方程为

    37、,则因为,所,即,故或,即或当时,点P,Q的坐标分别为,直线的方程为,点A到直线的距离为,故的面积为当时,点P,Q的坐标分别为,直线的方程为,点到直线的距离为,故的面积为综上所述,的面积为方法四:由(1)知椭圆的方程为,不妨设在x轴上方,如图设直线因为,所以由点P在椭圆上得,所以由点P在直线上得,所以所以,化简得所以,即所以,点Q到直线的距离又故即的面积为方法五:由对称性,不妨设P,Q在x轴上方,过P作轴,垂足为C,设,由题知,所以(1)则(其中)(2)同理,(其中)综上,的面积为【整体点评】(2)方法一:根据平面几何知识可求得点的坐标,从而得出点的坐标以及直线的方程,再根据距离公式即可求出三

    38、角形的面积,是通性通法;方法二:同方法一,最后通过面积分割法求的面积,计算上有简化,是本题的最优解;方法三:通过设直线的方程与椭圆的方程联立,求出点的坐标,再根据题目等量关系求出的值,从而得出点的坐标以及直线的方程,最后根据距离公式即可求出三角形的面积,思想简单,但运算较繁琐;方法四:与法三相似,设直线的方程,通过平面知识求出点的坐标,表示出点,再根据距离公式即可求出三角形的面积;方法五:同法一,只是在三角形面积公式的选择上,利用三角形面积的正弦形式结合平面向量的数量积算出14【2020年新高考1卷(山东卷)】已知椭圆C:的离心率为,且过点(1)求的方程:(2)点,在上,且,为垂足证明:存在定

    39、点,使得为定值【答案】(1);(2)详见解析.【解析】【分析】(1)由题意得到关于的方程组,求解方程组即可确定椭圆方程.(2)方法一:设出点,的坐标,在斜率存在时设方程为, 联立直线方程与椭圆方程,根据已知条件,已得到的关系,进而得直线恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点的位置.【详解】(1)由题意可得:,解得:,故椭圆方程为:.(2)方法一:通性通法设点,若直线斜率存在时,设直线的方程为:,代入椭圆方程消去并整理得:,可得,因为,所以,即,根据,代入整理可得:,所以,整理化简得,因为不在直线上,所以,故,于是的方程为,所以直线过定点直线过定点.

    40、当直线的斜率不存在时,可得,由得:,得,结合可得:, 解得:或(舍).此时直线过点.令为的中点,即,若与不重合,则由题设知是的斜边,故,若与重合,则,故存在点,使得为定值.方法二【最优解】:平移坐标系将原坐标系平移,原来的O点平移至点A处,则在新的坐标系下椭圆的方程为,设直线的方程为将直线方程与椭圆方程联立得,即,化简得,即设,因为则,即代入直线方程中得则在新坐标系下直线过定点,则在原坐标系下直线过定点又,D在以为直径的圆上的中点即为圆心Q经检验,直线垂直于x轴时也成立故存在,使得方法三:建立曲线系A点处的切线方程为,即设直线的方程为,直线的方程为,直线的方程为由题意得则过A,M,N三点的二次

    41、曲线系方程用椭圆及直线可表示为(其中为系数)用直线及点A处的切线可表示为(其中为系数)即对比项、x项及y项系数得将代入,消去并化简得,即故直线的方程为,直线过定点又,D在以为直径的圆上中点即为圆心Q经检验,直线垂直于x轴时也成立故存在,使得方法四:设若直线的斜率不存在,则因为,则,即由,解得或(舍)所以直线的方程为若直线的斜率存在,设直线的方程为,则令,则又,令,则因为,所以,即或当时,直线的方程为所以直线恒过,不合题意;当时,直线的方程为,所以直线恒过综上,直线恒过,所以又因为,即,所以点D在以线段为直径的圆上运动取线段的中点为,则所以存在定点Q,使得为定值【整体点评】(2)方法一:设出直线

    42、方程,然后与椭圆方程联立,通过题目条件可知直线过定点,再根据平面几何知识可知定点即为的中点,该法也是本题的通性通法;方法二:通过坐标系平移,将原来的O点平移至点A处,设直线的方程为,再通过与椭圆方程联立,构建齐次式,由韦达定理求出的关系,从而可知直线过定点,从而可知定点即为的中点,该法是本题的最优解;方法三:设直线,再利用过点的曲线系,根据比较对应项系数可求出的关系,从而求出直线过定点,故可知定点即为的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解以及的计算15【2020年新高考2卷(海南卷)】已知椭圆C:过点M(2,3),点A为其左顶点,且AM的斜率为 ,

    43、(1)求C的方程;(2)点N为椭圆上任意一点,求AMN的面积的最大值.【答案】(1);(2)18.【解析】【分析】(1)由题意分别求得a,b的值即可确定椭圆方程;(2)首先利用几何关系找到三角形面积最大时点N的位置,然后联立直线方程与椭圆方程,结合判别式确定点N到直线AM的距离即可求得三角形面积的最大值.【详解】(1)由题意可知直线AM的方程为:,即.当y=0时,解得,所以a=4,椭圆过点M(2,3),可得,解得b2=12.所以C的方程:.(2)设与直线AM平行的直线方程为:,如图所示,当直线与椭圆相切时,与AM距离比较远的直线与椭圆的切点为N,此时AMN的面积取得最大值.联立直线方程与椭圆方

    44、程,可得:,化简可得:,所以,即m2=64,解得m=8,与AM距离比较远的直线方程:,直线AM方程为:,点N到直线AM的距离即两平行线之间的距离,利用平行线之间的距离公式可得:,由两点之间距离公式可得.所以AMN的面积的最大值:.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题16【2019年新课标1卷理科】已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P(1)若|AF|+|BF|=4,

    45、求l的方程;(2)若,求|AB|【答案】(1);(2).【解析】【分析】(1)设直线:,;根据抛物线焦半径公式可得;联立直线方程与抛物线方程,利用韦达定理可构造关于的方程,解方程求得结果;(2)设直线:;联立直线方程与抛物线方程,得到韦达定理的形式;利用可得,结合韦达定理可求得;根据弦长公式可求得结果.【详解】(1)设直线方程为:,由抛物线焦半径公式可知:联立得:则,解得:直线的方程为:,即:(2)设,则可设直线方程为:联立得:则,则【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系.17

    46、【2019年新课标1卷文科】已知点A,B关于坐标原点O对称,AB =4,M过点A,B且与直线x+2=0相切(1)若A在直线x+y=0上,求M的半径(2)是否存在定点P,使得当A运动时,MAMP为定值?并说明理由【答案】(1)或;(2)见解析.【解析】【分析】(1)设,根据,可知;由圆的性质可知圆心必在直线上,可设圆心;利用圆心到的距离为半径和构造方程,从而解出;(2)当直线斜率存在时,设方程为:,由圆的性质可知圆心必在直线上;假设圆心坐标,利用圆心到的距离为半径和构造方程,解出坐标,可知轨迹为抛物线;利用抛物线定义可知为抛物线焦点,且定值为;当直线斜率不存在时,求解出坐标,验证此时依然满足定值

    47、,从而可得到结论.【详解】(1)在直线上设,则又,解得:过点,圆心必在直线上设,圆的半径为与相切又,即,解得:或当时,;当时,的半径为:或(2)存在定点,使得说明如下:,关于原点对称且直线必为过原点的直线,且当直线斜率存在时,设方程为:则的圆心必在直线上设,的半径为与相切又,整理可得:即点轨迹方程为:,准线方程为:,焦点,即抛物线上点到的距离当与重合,即点坐标为时,当直线斜率不存在时,则直线方程为:在轴上,设,解得:,即若,则综上所述,存在定点,使得为定值.【点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决本定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根

    48、据抛物线的定义得到定值,进而验证定值符合所有情况,使得问题得解.18【2019年新课标2卷理科】已知点A(2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PEx轴,垂足为E,连结QE并延长交C于点G.(i)证明:是直角三角形;(ii)求面积的最大值.【答案】(1)详见解析(2)详见解析【解析】【分析】(1)分别求出直线AM与BM的斜率,由已知直线AM与BM的斜率之积为,可以得到等式,化简可以求出曲线C的方程,注意直线AM与BM有斜率的条件;(2)(i)设出直

    49、线的方程,与椭圆方程联立,求出P,Q两点的坐标,进而求出点的坐标,求出直线的方程,与椭圆方程联立,利用根与系数关系求出的坐标,再求出直线的斜率,计算的值,就可以证明出是直角三角形;(ii)由(i)可知三点坐标,是直角三角形,求出的长,利用面积公式求出的面积,利用导数求出面积的最大值.【详解】(1)直线的斜率为,直线的斜率为,由题意可知:,所以曲线C是以坐标原点为中心,焦点在轴上,不包括左右两顶点的椭圆,其方程为;(2)(i)设直线的方程为,由题意可知,直线的方程与椭圆方程联立,即或,点P在第一象限,所以,因此点的坐标为直线的斜率为,可得直线方程:,与椭圆方程联立,消去得,(*),设点,显然点的

    50、横坐标和是方程(*)的解所以有,代入直线方程中,得,所以点的坐标为,直线的斜率为; ,因为所以,因此是直角三角形;(ii)由(i)可知:,的坐标为,,因为,所以当时,函数单调递增,当时,函数单调递减,因此当时,函数有最大值,最大值为.【点睛】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题,考查了数学运算能力,考查了利用导数求函数最大值问题.19【2019年新课标2卷文科】已知是椭圆的两个焦点,P为C上一点,O为坐标原点(1)若为等边三角形,求C的离心率;(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围.【答案】(1) ;(2)

    51、,a的取值范围为.【解析】【分析】(1)先连结,由为等边三角形,得到,;再由椭圆定义,即可求出结果;(2)先由题意得到,满足条件的点存在,当且仅当,根据三个式子联立,结合题中条件,即可求出结果.【详解】(1)连结,由为等边三角形可知:在中,于是,故椭圆C的离心率为;(2)由题意可知,满足条件的点存在,当且仅当,即由以及得,又由知,故;由得,所以,从而,故;当,时,存在满足条件的点.故,a的取值范围为.【点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.20【2019年新课标3卷理科】已知曲线C:y=,D为直线y=上的

    52、动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.【答案】(1)见详解;(2) 3或.【解析】【分析】(1)可设,然后求出A,B两点处的切线方程,比如:,又因为也有类似的形式,从而求出带参数直线方程,最后求出它所过的定点.(2)由(1)得带参数的直线方程和抛物线方程联立,再通过为线段的中点,得出的值,从而求出坐标和的值,分别为点到直线的距离,则,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设,则又因为,所以.则切线DA的斜率为,故,整理得.设,同理得.,都满足直线方程

    53、.于是直线过点,而两个不同的点确定一条直线,所以直线方程为.即,当时等式恒成立所以直线恒过定点.(2)由(1)得直线的方程为.由,可得,于是.设分别为点到直线的距离,则.因此,四边形ADBE的面积.设M为线段AB的中点,则,由于,而,与向量平行,所以,解得或.当时,;当时因此,四边形的面积为3或.【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以思路较为清晰,但计算量不小21【2018年新课标1卷理科】设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.【答案】(1)的方程为或;(2)证明

    54、见解析.【解析】【分析】(1)首先根据与轴垂直,且过点,求得直线的方程为,代入椭圆方程求得点的坐标为或,利用两点式求得直线的方程;(2)分直线与轴重合、与轴垂直、与轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果.【详解】(1)由已知得,l的方程为.由已知可得,点的坐标为或.所以的方程为或.(2)当与轴重合时,.当与轴垂直时,为的垂直平分线,所以.当与轴不重合也不垂直时,设的方程为,则,直线、的斜率之和为.由得.将代入得.所以,.则.从而,故、的倾斜角互补,所以.综上,.【点睛】该题考查的是有关直线与椭圆的问题,涉及到的知

    55、识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.22【2018年新课标1卷文科】设抛物线,点,过点的直线与交于,两点(1)当与轴垂直时,求直线的方程;(2)证明:【答案】(1)或;(2)见解析.【解析】【分析】(1)首先根据与轴垂直,且过点,求得直线的方程为,代入抛物线方程求得点的坐标为或,利用两点式求得直线的方程;

    56、(2)设直线的方程为,点、,将直线的方程与抛物线的方程联立,列出韦达定理,由斜率公式并结合韦达定理计算出直线、的斜率之和为零,从而得出所证结论成立.【详解】(1)当与轴垂直时,的方程为,可得的坐标为或所以直线的方程为或;(2)设的方程为,、,由,得,可知,直线、的斜率之和为,所以,可知、的倾斜角互补,所以.综上,.【点睛】该题考查的是有关直线与抛物线的问题,涉及到的知识点有直线方程的两点式、直线与抛物线相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写

    57、出两根和与两根积,借助于斜率的关系来得到角是相等的结论.23【2018年新课标2卷理科】设抛物线的焦点为,过且斜率为的直线与交于,两点,(1)求的方程;(2)求过点,且与的准线相切的圆的方程【答案】(1) y=x1,(2)或【解析】【详解】分析:(1)根据抛物线定义得,再联立直线方程与抛物线方程,利用韦达定理代入求出斜率,即得直线的方程;(2)先求AB中垂线方程,即得圆心坐标关系,再根据圆心到准线距离等于半径得等量关系,解方程组可得圆心坐标以及半径,最后写出圆的标准方程.详解:(1)由题意得F(1,0),l的方程为y=k(x1)(k0)设A(x1,y1),B(x2,y2)由得 ,故所以由题设知

    58、,解得k=1(舍去),k=1因此l的方程为y=x1(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为,即设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为或点睛:确定圆的方程方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程(2)待定系数法若已知条件与圆心和半径有关,则设圆的标准方程依据已知条件列出关于的方程组,从而求出的值;若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值24【2018年新课标3卷理科】已知斜率为的直线与椭圆交于,两点,线段的中点为(1)证明:;(2)设为

    59、的右焦点,为上一点,且证明:,成等差数列,并求该数列的公差【答案】(1)(2)或【解析】【详解】分析:(1)设而不求,利用点差法进行证明(2)解出m,进而求出点P的坐标,得到,再由两点间距离公式表示出,得到直的方程,联立直线与椭圆方程由韦达定理进行求解详解:(1)设,则.两式相减,并由得.由题设知,于是.由题设得,故.(2)由题意得,设,则.由(1)及题设得.又点P在C上,所以,从而,.于是.同理.所以.故,即成等差数列.设该数列的公差为d,则.将代入得.所以l的方程为,代入C的方程,并整理得.故,代入解得.所以该数列的公差为或.点睛:本题主要考查直线与椭圆的位置关系,等差数列的性质,第一问利

    60、用点差法,设而不求可减小计算量,第二问由已知得到,求出m得到直线方程很关键,考查了函数与方程的思想,考察学生的计算能力,难度较大25【2018年新课标3卷文科】已知斜率为的直线与椭圆交于,两点线段的中点为(1)证明:;(2)设为的右焦点,为上一点,且证明:【答案】(1)证明见解析(2)证明见解析【解析】【详解】分析:(1)设而不求,利用点差法,或假设直线方程,联立方程组,由判别式和韦达定理进行证明(2)先求出点P的坐标,解出m,得到直线的方程,联立直线与椭圆方程由韦达定理进行求解详解:(1)设,则,两式相减,并由得由题设知,于是由题设得,故(2)由题意得F(1,0)设,则由(1)及题设得,又点P在C上,所以,从而,于是同理所以故点睛:本题主要考查直线与椭圆的位置关系,第一问利用点差法,设而不求可减小计算量,第二问由已知得求出m,得到,再有两点间距离公式表示出,考查了学生的计算能力,难度较大

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题08 平面解析几何(解答题)(教师版).docx
    链接地址:https://www.ketangku.com/wenku/file-830137.html
    相关资源 更多
  • 六年级上册数学一课一练数学好玩 第3课时比赛场次 北师大版(含答案).docx六年级上册数学一课一练数学好玩 第3课时比赛场次 北师大版(含答案).docx
  • 六年级上册数学一课一练总复习 第3课时 图形与几何 青岛版(含答案).docx六年级上册数学一课一练总复习 第3课时 图形与几何 青岛版(含答案).docx
  • 六年级上册数学一课一练总复习 第1课时 数与代数(1) 青岛版(含答案).docx六年级上册数学一课一练总复习 第1课时 数与代数(1) 青岛版(含答案).docx
  • 六年级上册数学一课一练圆的周长_人教新课标(含解析).docx六年级上册数学一课一练圆的周长_人教新课标(含解析).docx
  • 六年级上册数学一课一练圆.docx六年级上册数学一课一练圆.docx
  • 六年级上册数学一课一练分数除法_人教新课标()(含解析).docx六年级上册数学一课一练分数除法_人教新课标()(含解析).docx
  • 六年级上册数学一课一练分数除法_人教新课标(含解析).docx六年级上册数学一课一练分数除法_人教新课标(含解析).docx
  • 六年级上册数学一课一练分数除法.docx六年级上册数学一课一练分数除法.docx
  • 六年级上册数学一课一练分数的乘除混合运算.docx六年级上册数学一课一练分数的乘除混合运算.docx
  • 六年级上册数学一课一练分数乘法的应用.docx六年级上册数学一课一练分数乘法的应用.docx
  • 六年级上册数学一课一练分数乘法 人教新课标.docx六年级上册数学一课一练分数乘法 人教新课标.docx
  • 六年级上册数学一课一练分数乘整数_人教新课标()(含解析).docx六年级上册数学一课一练分数乘整数_人教新课标()(含解析).docx
  • 六年级上册数学一课一练分数乘整数_人教新课标(含解析).docx六年级上册数学一课一练分数乘整数_人教新课标(含解析).docx
  • 六年级上册数学一课一练位置与方向(二)_人教新课标()(含解析).docx六年级上册数学一课一练位置与方向(二)_人教新课标()(含解析).docx
  • 六年级上册数学一课一练位置与方向(二)_人教新课标(含解析).docx六年级上册数学一课一练位置与方向(二)_人教新课标(含解析).docx
  • 六年级上册数学一课一练位置.docx六年级上册数学一课一练位置.docx
  • 六年级上册数学一课一练8数学广角 数与形∣人教新课标.docx六年级上册数学一课一练8数学广角 数与形∣人教新课标.docx
  • 六年级上册数学一课一练5.2 圆的周长(无答案)_北京版().docx六年级上册数学一课一练5.2 圆的周长(无答案)_北京版().docx
  • 六年级上册数学一课一练3.1倒数的认识∣人教新课标.docx六年级上册数学一课一练3.1倒数的认识∣人教新课标.docx
  • 六年级上册数学一课一练1.2分数乘分数∣人教新课标.docx六年级上册数学一课一练1.2分数乘分数∣人教新课标.docx
  • 六年级上册数学一课一练-8.可能性 西师大版(2014秋)(含答案).docx六年级上册数学一课一练-8.可能性 西师大版(2014秋)(含答案).docx
  • 六年级上册数学一课一练-6.1分数混合运算 西师大版(2014秋)(含答案).docx六年级上册数学一课一练-6.1分数混合运算 西师大版(2014秋)(含答案).docx
  • 六年级上册数学一课一练-5.图形的变换和位置的确定 西师大版(2014秋)(含答案).docx六年级上册数学一课一练-5.图形的变换和位置的确定 西师大版(2014秋)(含答案).docx
  • 六年级上册数学一课一练-4.比和比例的分配 西师大版(2014秋)(含答案).docx六年级上册数学一课一练-4.比和比例的分配 西师大版(2014秋)(含答案).docx
  • 六年级上册数学一课一练-3.分数除法 西师大版(2014秋).docx六年级上册数学一课一练-3.分数除法 西师大版(2014秋).docx
  • 六年级上册数学一课一练-2.圆 西师大版(2014秋).docx六年级上册数学一课一练-2.圆 西师大版(2014秋).docx
  • 六年级上册数学一课一练-1.分数乘法 西师大版(2014秋).docx六年级上册数学一课一练-1.分数乘法 西师大版(2014秋).docx
  • 六年级上册数学一课一练 “黄金比”之美 青岛版(含答案).docx六年级上册数学一课一练 “黄金比”之美 青岛版(含答案).docx
  • 六年级上册数学 分数乘除法 综合复习.docx六年级上册数学 分数乘除法 综合复习.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1