专题32 二次函数与旋转问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题32 二次函数与旋转问题-2022年中考数学之二次函数重点题型专题全国通用版原卷版 专题 32 二次 函数 旋转 问题 2022 年中 数学 重点 题型 全国 通用版 原卷版
- 资源描述:
-
1、专题32 二次函数与旋转问题1(20212022辽宁千山九年级阶段练习)如图,在平面直角坐标系中,抛物线交x轴于点A和,交y轴于点,抛物线的对称轴交x轴于点E,交抛物线于点F(1)求抛物线的解析式;(2)将线段绕着点O沿顺时针方向旋转得到线段,旋转角为,连接,求的最小值;(3)M为平面直角坐标系中一点,在抛物线上是否存在一点N,使得以A,B,M,N为顶点的四边形为矩形?若存在,请直接写出点N的横坐标;若不存在,请说明理由2(20212022辽宁连山九年级期中)如图,在半面直角坐标系中,抛物线与x轴交于点A、B,其中点A的坐标为,与y轴交于点(1)求抛物线的解析式;(2)若点D为抛物线上上方的一
2、个动点,过点D作轴,交于点E,过D作,交直线于点F,以、为边作矩形,设矩形的周长为l,求l的最大值;(3)点P是x轴上一动点,将线段绕点P旋转得到,当点Q刚好落在抛物线上时,请直接写出点Q的坐标 备用图3(20212022湖南长沙市九年级阶段练习)如图1,抛物线()与x轴交于A,B两点(点B在点A右侧),与y轴交于点C,连接BC(1)求点A,B的坐标;(2)若tanBCO2,点P是抛物线上的一个动点,且位于第一象限,作PQx轴于点Q,连接PA,当APQ与BOC相似时,求点P的坐标;(3)如图2,在第(2)问的条件下,若PA与y轴交于点E,且OEOB,连接BE,以BE为直径画圆交抛物线于点D,连
3、接DB、DE直接写出点D的坐标;作DF平分BDE交BE于点F,过点F作直线l与射线DB、DE分别交于点M、N,当直线l绕点F旋转时,试判断的值是否变化,若不变,请求出它的值;若变化,请说明理由4(2021江苏宜兴市中考二模)抛物线与轴交于、两点(点在点的左侧),与轴交于点,线段的中点为点将绕着点逆时针旋转,点的对应点为,点的对应点为(1)求、三点的坐标;(2)当旋转至时,求此时、两点间的距离;(3)点是线段上的动点,旋转后的对应点为,当恰巧落在边上时,连接,试求最小时点的坐标;(4)连接,则在旋转过程中,的面积是否存在最大值?若存在,直接写出最大值,若不存在,说明理由5如图1,抛物线经过点、两
4、点,是其顶点,将抛物线绕点旋转,得到新的抛物线(1)求抛物线的函数解析式及顶点的坐标;(2)如图2,直线经过点,是抛物线上的一点,设点的横坐标为(),连接并延长,交抛物线于点,交直线l于点,求的值;(3)如图3,在(2)的条件下,连接、,在直线下方的抛物线上是否存在点,使得?若存在,求出点的横坐标;若不存在,请说明理由6(2021广东广州市中考二模)在平面直角坐标系中,:二次函数()的图象与轴交于、两点(点在点的左侧)且,与轴交于点(1)求二次函数的表达式;(2)将抛物线向上平移个单位,得到抛物线,当时,抛物线与轴只有一个公共点,结合函数图象,求出的取值范围;(3)将绕的中点旋转,得到,若点是
5、线段上一动点,交直线于点,点为线段的中点,当点从点向点运动时求的值如何变化?请说明理由;求点到达点时,直接写出点经过的路线长7如图所示,抛物线经过,三点,线段BC与抛物线的对称轴相交于点D设抛物线的顶点为P,连接PA,AD ,DP,线段AD与y轴相交于点E(1)求该抛物线的表达式(2)在平面直角坐标系中是否存在点Q,使以Q,C,D为顶点的三角形与ADP全等?若存在,求出点Q的坐标;若不存在,说明理由(3)将绕点E顺时针旋转,边EC旋转后与线段BC相交于点M,边ED旋转后与对称轴相交于点N,连接PM ,DN,若,求点N的坐标(直接写出结果)8如图,直线:与轴,轴分别相交于、两点,抛物线过点(1)
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-834789.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
