人教版九年级数学上册第二十一章一元二次方程重点解析试题(含解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 上册 第二十一 一元 二次方程 重点 解析 试题
- 资源描述:
-
1、九年级数学上册第二十一章一元二次方程重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于x的方程有两个实数根,且,那么m的值为()ABC或1D或42、方程y2-a有实数根的条件是()Aa0Ba0C
2、a0Da为任何实数3、用配方法解一元二次方程,配方正确的是()ABCD4、方程的解是()A2或0B2或0C2D2或05、在解一元二次方程x2+px+q0时,小红看错了常数项q,得到方程的两个根是3,1小明看错了一次项系数P,得到方程的两个根是5,4,则原来的方程是()Ax2+2x30Bx2+2x200Cx22x200Dx22x306、关于x的方程a2x2+(2a1)x+10,下列说法中正确的是()A当a时,方程的两根互为相反数B当a0时,方程的根是x1C若方程有实数根,则a0且aD若方程有实数根,则a7、如图,把长40,宽30的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余
3、的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为(纸板的厚度忽略不计),若折成长方体盒子的表面积是950,则的值是()A3B4C4.8D58、某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A4B5C6D79、设,是方程的两个实数根,则的值为()A2020B2021C2022D202310、若2-是方程x2-4x+c=0的一个根,则c的值是()A1B3-C1+D2+第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、设,是方程的两个实数根,则的值为_2、如果m是方程x2-2x-6=0的一个根,那么代数式2m-
4、m2+7的值为_3、关于的一元二次方程有一个根是,则的值是_4、已知3人患流感,经过两轮传染后,患流感总人数为108人,则平均每人每轮感染_个人5、若关于x的一元二次方程的根的判别式的值为4,则m的值为_三、解答题(5小题,每小题10分,共计50分)1、解方程:2、(1)解方程:(2)解方程:3、列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?4、一商店销
5、售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为_件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?5、已知正方形ABCD的对角线AC,BD相交于点O(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F若DFCE,求证:OEOG;(2)如图2,H是BC上的点,过点H作EHBC,交线段OB于点E,连结DH交CE于点F,交OC于点G若OEOG,求证:ODGOCE;当AB1时,求HC的长
6、-参考答案-一、单选题1、A【解析】【分析】通过根与系数之间的关系得到,由可求出m的值,通过方程有实数根可得到,从而得到m的取值范围,确定m的值【详解】解:方程有两个实数根,整理得,解得,若使有实数根,则,解得,所以,故选:A【考点】本题考查了一元二次方程根与系数之间的关系和跟的判别式,注意使一元二次方程有实数根的条件是解题的关键2、A【解析】【分析】根据平方的非负性可以得出a0,再进行整理即可【详解】解:方程y2a有实数根,a0(平方具有非负性),a0;故选:A【考点】此题考查了直接开平方法解一元二次方程,关键是根据已知条件得出a03、A【解析】【分析】按照配方法的步骤进行求解即可得答案【详
7、解】解:,移项得,二次项系数化1的,配方得,即,故选:A【考点】本题考查了配方法解一元二次方程,配方法的一般步骤为(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方4、B【解析】【分析】首先提公因式,再根据平方差公式分解因式,即可得出结论【详解】解:,或或,故选:B【考点】本题考查了高次方程,运用类比思想将高次方程转化为二次方程或一次方程是解题的关键5、B【解析】【分析】分别按照看错的情况构建出一元二次方程,再舍去错误信息,从而可得正确答案.【详解】解: 小红看错了常数项q,得到方程的两个根是3,1,所以此时方程为: 即: 小明看错了一次项系数
8、P,得到方程的两个根是5,4,所以此时方程为: 即: 从而正确的方程是: 故选:【考点】本题考查的是根据一元二次方程的根构建一元二次方程,掌握利用一元二次方程的根构建方程的方法是解题的关键.6、D【解析】【分析】先讨论原方程是一元一次方程,还是一元二次方程,然后再根据a的取值范围解答即可【详解】解:若a0,则此方程是一元二次方程,由于方程有实数根,=(2a-1)2-4a2=-4a+10,a0且a,即A错误;若a=0,则原方程为-x+1=0,所以方程有实数根为x=1,则B错误,C错误综上所述,当a时方程有实数根.故选D【考点】本题考查了一元一次方程和一元二次方程,掌握分类讨论思想是解答本题的关键
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
