基础强化人教版九年级数学上册第二十四章圆专项攻克试卷.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基础 强化 人教版 九年级 数学 上册 第二 十四 专项 攻克 试卷
- 资源描述:
-
1、人教版九年级数学上册第二十四章圆专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知O中最长的弦为8cm,则O的半径为()cmA2B4C8D162、如图,已知是的两条切线,A,B为切点,线段交于点
2、M给出下列四种说法:;四边形有外接圆;M是外接圆的圆心,其中正确说法的个数是()A1B2C3D43、如图,在中,以点为圆心,为半径的圆与相交于点,则的长为()A2BC3D4、如图,点A,B,C,D,E是O上5个点,若ABAO2,将弧CD沿弦CD翻折,使其恰好经过点O,此时,图中阴影部分恰好形成一个“钻戒型”的轴对称图形,则“钻戒型”(阴影部分)的面积为()AB43C44D5、已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()ABCD6、在O中按如下步骤作图:(1)作O的直径AD;(2)以点D为圆心,DO长为半径画弧,交O于B,C两点;(3)连接DB,DC,AB,AC,BC根据以上作
3、图过程及所作图形,下列四个结论中错误的是()AABD90BBADCBDCADBCDAC2CD7、 “圆材埋壁”是我国古代著名数学著作九章算术中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:如图所示,CD为O的直径,弦ABCD,垂足为E,CE为1寸,AB为10寸,求直径CD的长依题意,CD长为()A寸B13寸C25寸D26寸8、如图,O的半径为5,AB为弦,点C为的中点,若ABC=30,则弦AB的长为()AB5CD59、如图,在四边形ABCD中,则AB()A4B5CD10、如图,是的弦,点在过点的切线上,交于点若,则的度数等于()A
4、BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,点是的中点,连接交弦于点,若,则的长是_2、如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_3、如图,在矩形 中,是边上一点,连接,将矩形沿翻折,使点落在边上点处,连接.在上取点,以点为圆心,长为半径作与相切于点.若,给出下列结论:是的中点;的半径是2; ;.其中正确的是_.(填序号)4、如图,在中,半径,是半径上一点,且,是上的两个动点,是的中点,则的长的最大值等于_5、如图,一下水管道横截面为
5、圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升_cm三、解答题(5小题,每小题10分,共计50分)1、如图,OC为O的半径,弦ABOC于点D,OC10,CD4,求AB的长2、下列每个正方形的边长为2,求下图中阴影部分的面积3、正方形ABCD的四个顶点都在O上,E是O上的一点(1)如图,若点E在上,F是DE上的一点,DF=BE求证:ADFABE;(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE-BE=AE请说明理由;(3)如图,若点E在上连接DE,CE,已知BC=5,BE=1,求DE及CE的长4、如图,点A,B,C,D在O上
6、,求证:(1)ACBD;(2)ABEDCE5、在中,已知O经过点C,且与相切于点D(1)在图中作出O;(要求:尺规作图,不写作法,保留作图痕迹)(2)若点D是边上的动点,设O与边、分别相交于点E、F,求的最小值-参考答案-一、单选题1、B【解析】【分析】O最长的弦就是直径从而不难求得半径的长【详解】解:O中最长的弦为8cm,即直径为8cm,O的半径为4cm故选:B.【考点】本题考查弦,直径等知识,记住圆中的最长的弦就是直径是解题的关键2、C【解析】【分析】由切线长定理判断,结合等腰三角形的性质判断,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,判断,利用反证法判断【详解】如图, 是的
7、两条切线, 故正确, 故正确, 是的两条切线, 取的中点,连接,则 所以:以为圆心,为半径作圆,则共圆,故正确, M是外接圆的圆心, 与题干提供的条件不符,故错误,综上:正确的说法是个,故选C【考点】本题考查的是切线长定理,三角形的外接圆,四边形的外接圆,掌握以上知识是解题的关键3、C【解析】【分析】过C点作CHAB于H点,在ABC、CBH中由分别求出BC和BH,再由垂径定理求出BD,进而AD=AB-BD即可求解【详解】解:过C点作CHAB于H点,如下图所示:ACB=90,A=30,ABC、CBH均为30、60、90直角三角形,其三边之比为,RtABC中,RtBCH中,由垂径定理可知:,故选:
8、C【考点】本题考查了直角三角形30角所对直角边等于斜边的一半,垂径定理等知识点,熟练掌握垂径定理是解决本题的关键4、A【解析】【分析】连接CD、OE,根据题意证明四边形OCED是菱形,然后分别求出扇形OCD和菱形OCED以及AOB的面积,最后利用割补法求解即可【详解】解:连接CD、OE,由题意可知OCODCEED,弧弧,S扇形ECDS扇形OCD,四边形OCED是菱形,OE垂直平分CD,由圆周角定理可知CODCED120,CD222,ABOAOB2,AOB是等边三角形,SAOB22,S阴影2S扇形OCD2S菱形OCED+SAOB2(22)+2(2)+3,故选:A【考点】此题考查了菱形的性质和判定
9、,等边三角形的性质,圆周角定理,求解圆中阴影面面积等知识,解题的关键是根据题意做出辅助线,利用割补法求解5、C【解析】【分析】先依据题意画出图形,如图(见解析),过点A作于D,利用勾股定理可求出AD的长,再根据三角形内切圆的性质、三角形的面积公式即可得出答案【详解】解:如图,内切圆O的半径为,切点为,则过点A作于D,设,则由勾股定理得:则,即解得,即又即解得则内切圆的半径为故选:C【考点】本题考查了三角形内切圆的性质、勾股定理等知识点,读懂题意,正确画出图形,并求出AD的长是解题关键6、D【解析】【分析】根据作图过程可知:AD是O的直径,根据垂径定理即可判断A、B、C正确,再根据DCOD,可得
10、AD2CD,进而可判断D选项【详解】解:根据作图过程可知:AD是O的直径,ABD90,A选项正确;BDCD,,BADCBD,B选项正确;根据垂径定理,得ADBC,C选项正确;DCOD,AD2CD,D选项错误故选:D【考点】本题考查作图-复杂作图、含30度角的直角三角形、垂径定理、圆周角定理,解决本题的关键是熟练掌握相关知识点7、D【解析】【分析】连结AO,根据垂径定理可得:,然后设O半径为R,则OER1再由勾股定理,即可求解【详解】解:连结AO, CD为直径,CDAB, 设O半径为R,则OER1RtAOE中,OA2AE2+OE2, R252+(R-1)2,R13,CD2R26(寸)故选:D【考
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
