分享
分享赚钱 收藏 举报 版权申诉 / 25

类型基础强化人教版八年级数学上册第十三章轴对称同步测试试卷(含答案详解版).docx

  • 上传人:a****
  • 文档编号:958578
  • 上传时间:2025-12-19
  • 格式:DOCX
  • 页数:25
  • 大小:488.51KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    基础 强化 人教版 八年 级数 上册 第十三 轴对称 同步 测试 试卷 答案 详解
    资源描述:

    1、人教版八年级数学上册第十三章轴对称同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个三角形具备下列条件仍不是等边三角形的是()A一个角的平分线是对边的中线或高线B两边相等,有一个内角是60C两角

    2、相等,且两角的和是第三个角的2倍D三个内角都相等2、观察下列作图痕迹,所作线段为的角平分线的是()ABCD3、如图,在平面直角坐标系中,ABC位于第二象限,点B的坐标是(5,2),先把ABC向右平移4个单位长度得到A1B1C1,再作与A1B1C1关于于x轴对称的A2B2C2,则点B的对应点B2的坐标是()A(3,2)B(2,3)C(1,2)D(1,2)4、下列命题中,属于假命题的是()A边长相等的两个等边三角形全等B斜边相等的两个等腰直角三角形全等C周长相等的两个三角形全等D底边和顶角对应相等的两个等腰三角形全等5、如图,ABC是边长为4的等边三角形,点P在AB上,过点P作PEAC,垂足为E,

    3、延长BC至点Q,使CQPA,连接PQ交AC于点D,则DE的长为()A1B1.8C2D2.56、在下列命题中,正确的是()A一组对边平行的四边形是平行四边形B有一个角是直角的四边形是矩形C有一组邻边相等的四边形是菱形D对角线互相垂直平分的四边形是菱形7、如图,ABC与ABC关于直线MN对称,P为MN上任一点(A、P、A不共线),下列结论中错误的是()AAAP是等腰三角形BMN垂直平分AA、CCCABC与ABC面积相等D直线AB,AB的交点不一定在直线MN上8、如果一个等腰三角形的周长为17cm,一边长为5cm,那么腰长为()A5cmB6cmC7cmD5cm或6cm9、如图,在中,则()ABCD1

    4、0、如图,在矩形中,动点满足,则点到、两点距离之和的最小值为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点A(5,2)关于x轴对称的点的坐标为 _2、如图,在中,垂直平分,点P为直线上一动点,则周长的最小值是_3、如图,在中,以点为圆心,长为半径作弧,交射线于点,连接,则的度数是_4、如图,过边长为16的等边ABC的边AB上的一点P,作PEAC于点E,点Q为BC延长线上一点,当PACQ时,连接PQ交AC边于点D,则DE的长为_5、如图,在等边三角形ABC中,点D是边BC的中点,则BAD=_三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形网

    5、格上有一个(1)画出关于直线的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求的面积2、如图1,在中,A=120,C=20,BD平分ABC交AC于点D(1)求证:BD=CD(2)如图2,若BAC的角平分线AE交BC于点E,求证:AB+BE=AC(3)如图3,若BAC的外角平分线AE交CB的延长线于点E,则(2)中的结论是否成立?若成立,给出证明,若不成立,写出正确的结论3、如图,在ABC中,AB=AC,点D是BC的中点,连接AD,过点C作CEAD,交BA的延长线于点E(1)求证:ECBC;(2)若BAC=120,试判定ACE的形状,并说明理由4、已知,ABC三条边的长分别为(1

    6、)若,当ABC为等腰三角形,求ABC的周长(2)化简:5、如图,ABAC,BAC120,AB的垂直平分线交BC于点D(1)求ADC的度数;(2)求证:DC2DB-参考答案-一、单选题1、A【解析】【分析】根据等边三角形的判定方法即可解答.【详解】选项A,一个角的平分线是对边的中线或高线,能判定该三角形是等腰三角形,不能判断该三角形是等边三角形;选项B,两边相等,有一个内角是60,根据有一个角为60的等腰三角形是等边三角形,即可判定该三角形是等边三角形;选项C,两角相等,且两角的和是第三个角的2倍 ,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三角形是等边三角形;选项

    7、D,三个内角都相等,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三角形是等边三角形.故选A.【考点】本题考查了等边三角形的判定,熟练运用等边三角形的判定方法是解决问题的关键.2、C【解析】【分析】根据角平分线画法逐一进行判断即可【详解】:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为的角平分线,满足题意。D:所作线段为AB边上的高,选项错误故选:.【考点】本题考查点到直线距离的画法,角平分线的画法,中垂线的画法,能够区别彼此之间的不同是解题切入点3、D【解析】【分析】首先利用平移的性质得到A1B1C1中点

    8、B的对应点B1坐标,进而利用关于x轴对称点的性质得到A2B2C2中B2的坐标,即可得出答案【详解】解:把ABC向右平移4个单位长度得到A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),则与A1B1C1关于于x轴对称的A2B2C2中B2的坐标为(-1,-2),故选D【考点】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键4、C【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,等边三角形的性质,直角三角形的性质,逐一判断选项,即可得到答案【详解】解:A、边长相等的两个等边三角形全等,是真命题,故A不符合题意;B、斜边相等的两个等腰直角三角形全等,是真命题,

    9、故B不符合题意;C、周长相等的两个三角形不一定全等,原命题是假命题,故C符合题意;D、底边和顶角对应相等的两个等腰三角形全等,是真命题,故D不符合题意故选:C【考点】本题考查了命题与定理,牢记有关的性质、定义及定理是解决此类题目的关键5、C【解析】【分析】过作的平行线交于,通过证明,得,再由是等边三角形,即可得出【详解】解:过作的平行线交于,是等边三角形,是等边三角形,CQPA,在中和中,于,是等边三角形,故选:C【考点】本题主要考查了等边三角形的判定与性质,全等三角形的判定与性质,作辅助线构造全等三角形是解题的关键6、D【解析】【分析】分别利用矩形的判定方法、以及菱形的判定与性质和平行四边形

    10、的判定方法分析得出答案【详解】解:A、有一组对边平行且相等的四边形是平行四边形,错误;B、有一个角是直角的平行四边形是矩形,错误;C、有一组邻边相等的平行四边形是菱形,错误;D、对角线互相垂直平分的四边形是菱形,正确;故选:D【考点】本题主要考查了矩形的判定、以及菱形的判定与性质和平行四边形的判定,正确把握相关判定定理是解题关键7、D【解析】【分析】据对称轴的定义,ABC与ABC关于直线MN对称,P为MN上任意一点,可以判断出图中各点或线段之间的关系【详解】解:ABC与ABC关于直线MN对称,P为MN上任意一点,AAP是等腰三角形,MN垂直平分AA,CC,这两个三角形的面积相等,故A、B、C选

    11、项正确,直线AB,AB关于直线MN对称,因此交点一定在MN上,故D错误,故选:D【考点】本题主要考查了轴对称性质的理解和应用,准确分析判断是解题的关键8、D【解析】【分析】此题分为两种情况:5cm是等腰三角形的底边长或5cm是等腰三角形的腰长,然后进一步根据三角形的三边关系进行分析能否构成三角形【详解】当5cm是等腰三角形的底边时,则其腰长是(175)26(cm),能够组成三角形;当5cm是等腰三角形的腰时,则其底边是17527(cm),能够组成三角形故该等腰三角形的腰长为:6cm或5cm故选:D【考点】此题考查了等腰三角形的两腰相等的定义,三角形的三边关系,熟练掌握等腰三角形的定义是解题的关

    12、键9、D【解析】【分析】先根据等腰三角形的性质得到B的度数,再根据平行线的性质得到BCD.【详解】解:AB=AC,A=40,B=ACB=70,CDAB,BCD=B=70,故选D.【考点】本题考查了等腰三角形的性质和平行线的性质,掌握等边对等角是关键,难度不大.10、D【解析】【分析】由,可得PAB的AB边上的高h=2,表明点P在平行于AB的直线EF上运动,且两平行线间的距离为2;延长FC到G,使FC=CG,连接AG交EF于点H,则点P与H重合时,PA+PB最小,在RtGBA中,由勾股定理即可求得AG的长,从而求得PA+PB的最小值【详解】解:设PAB的AB边上的高为h h=2表明点P在平行于A

    13、B的直线EF上运动,且两平行线间的距离为2,如图所示BF=2四边形ABCD为矩形BC=AD=3,ABC=90FC=BC-BF=3-2=1延长FC到G,使CG=FC=1,连接AG交EF于点HBF=FG=2EFAB EFG=ABC=90EF是线段BG的垂直平分线PG=PBPA+PB=PA+PGAG当点P与点H重合时,PA+PB取得最小值AG在RtGBA中,AB=5,BG=2BF=4,由勾股定理得: 即PA+PB的最小值为故选:D【考点】本题是求两条线段和的最小值问题,考查了矩形的性质,勾股定理,线段垂直平分线的性质、两点之间线段最短等知识,难点在于确定点P运动的路径,路径确定后就是典型的将军饮马问

    14、题二、填空题1、(5,2)【解析】【分析】根据关于x轴对称的点的横坐标不变,纵坐标互为相反数解答【详解】解:点A(5,-2)关于x轴对称的点的坐标是(5,2)故答案为:(5,2)【考点】本题考查了关于原点对称的点的坐标,关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数2、7【解析】【分析】根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP的最小值,求出AC长度即可得到结论【详解】解:垂直平分,

    15、B,C关于直线对称设交于点D,当P和D重合时,的值最小,最小值等于的长,周长的最小值是【考点】本题考查了勾股定理,轴对称-最短路线问题的应用,解题的关键是找出P的位置3、10或100【解析】【分析】分两种情况画图,由作图可知得,根据等腰三角形的性质和三角形内角和定理解答即可【详解】解:如图,点即为所求;在中,由作图可知:,;由作图可知:,综上所述:的度数是或故答案为:或【考点】本题考查了作图复杂作图,三角形内角和定理,等腰三角形的判定与性质,解题的关键是掌握基本作图方法4、8【解析】【分析】根据题意,作出合适的辅助线,然后根据全等三角形的判定和性质可以求得DE的长,本题得以解决【详解】解:作Q

    16、FAC,交AC的延长线于点F,则QFC=90,ABC是等边三角形,PEAC于点E,A=ACB=60,PEA=90,PEA=QFC,ACB=QCF,A=QCF,在PEA和QFC中,PEAQFC(AAS),AE=CF,PE=QF,AC=AE+EC=16,EF=CF+EC=16,PED=90,QFD=90,PED=QFD,在PED和QFD中,PEDQFD(AAS),ED=FD,ED+FD=EF=16,DE=8,故答案为:8【考点】本题考查了全等三角形的判定与性质、等边三角形的性质,解答本题的关键是明确题意,利用等三角形的判定与性质和数形结合的思想解答5、30【解析】【分析】根据等腰三角形的三线合一的

    17、性质和等边三角形三个内角相等的性质填空【详解】ABC是等边三角形, 又点D是边BC的中点, 故答案是:30【考点】考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴三、解答题1、(1)见解析;(2)8.5【解析】【分析】(1)先利用网格确定ABC关于直线MN对称的点,再顺次连接各点即可得到ABC关于直线MN的对称图形;(2)利用矩形面积减去周围多余三角形面积即可【详解】解:(1)如图所示:DEF即为所求; (2)ABC的面积:45- 41- 53- 41=20-2-7.5-2=8.

    18、5【考点】此题主要考查了作图-轴对称变换,关键是确定组成图形的关键点的对称点位置2、 (1)见解析(2)见解析(3)不成立,正确的结论是BE-AB=AC,见解析【解析】【分析】(1)根据三角形内角和可得,利用角平分线得出,由等角对等边即可证明;(2)过点E作交AC于点F,根据平行线的性质可得,由等量代换、外角的性质及等角对等边可得,依据全等三角形的判定和性质可得,结合图形,由线段间的数量关系进行等量代换即可证明;(3)(2)中的结论不成立,正确的结论是过点A作交BE于点F,由平行线的性质及等量代换可得,根据等角对等边得出,由角平分线可得,结合图形根据各角之间的数量关系得出,由等角对等边可得,结

    19、合图形进行线段间的等量代换即可得出结果(1)证明:,BD平分,;(2)证明:如图:过点E作交AC于点F,AE是的平分线,在和中,;(3)解:(2)中的结论不成立,正确的结论是理由如下:如图,过点A作交BE于点F,AE是的外角平分线,【考点】题目主要考查等腰三角形的判定和性质,全等三角形的判定和性质,利用角平分线进行角度的计算,平行线的性质,三角形内角和定理等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键3、 (1)见详解(2)见详解【解析】【分析】(1)根据等腰三角形三线合一的性质得到ADBC,然后根据CEAD即可得到结论;(2)根据BAC=120,得到BAD=60, EAC =60

    20、,由CEAD得到EAC =E=ECA=60,即可证得结论(1)证明:AB=AC,点D是BC的中点,ADBC,又CEAD,ECBC;(2)解:ACE是等边三角形,理由如下:BAC=120,BAD=BAC =60, EAC =60,又CEAD,E=60,EAC =E=ECA=60,ACE是等边三角形.【考点】本题考查了等腰三角形的性质,平行线的性质,等边三角形的判定,熟练掌握性质定理是解题的关键4、(1)ABC的周长为10;(2)【解析】【分析】(1)利用非负数的性质求出a与b的值,即可确定出三角形周长;(2)根据三角形三边满足的条件是,两边和大于第三边,两边的差小于第三边,根据此来确定绝对值内的

    21、式子的正负,从而化简计算即可【详解】解:(1),a-2=0,b-4=0,a=2,b=4,ABC为等腰三角形,当2为腰时,则三边为2,2,4,而2+24,能组成三角形,ABC的周长为2+4+4=10;(2)ABC三条边的长分别为a、b、c,即,【考点】本题主要考查了等腰三角形的性质,三角形的三边关系,以及绝对值的计算,第(2)问的关键是先根据三角形三边的关系来判定绝对值内式子的正负5、(1)60;(2)详见解析【解析】【分析】(1)根据等腰三角形两底角相等求出B,再根据线段垂直平分线上的点到两端点的距离相等可得ADBD,根据等边对等角可得BADB,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解;(2)根据三角形的内角和得到DAC90,根据直角三角形的性质得到ADCD,根据等腰三角形的性质即可得到结论【详解】(1)解:ABAC,BAC120,BC=(180BAC)(180120)30,DE垂直平分AB,ADBD,BADB30,ADCBBAD303060;(2)证明:ADC60,C30,DAC90,ADCD,BDAD,DC2DB【考点】本题考查线段垂直平分线的性质、等腰三角形的性质、直角三角形中30角所对的的直角边等于斜边的一半,平时要熟练掌握各性质定理

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:基础强化人教版八年级数学上册第十三章轴对称同步测试试卷(含答案详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-958578.html
    相关资源 更多
  • 小学二年级数学《角的初步认识》精选测试题及参考答案【考试直接用】.docx小学二年级数学《角的初步认识》精选测试题及参考答案【考试直接用】.docx
  • 2017-2018学年高中数学人教A版选修1-2课件:复习课(一) 统计案例 .ppt2017-2018学年高中数学人教A版选修1-2课件:复习课(一) 统计案例 .ppt
  • 2017-2018学年高中数学人教A版选修1-2创新应用课件:第三章 3-2 复数代数形式的四则运算 第2课时 复数代数形式的乘除运算 .ppt2017-2018学年高中数学人教A版选修1-2创新应用课件:第三章 3-2 复数代数形式的四则运算 第2课时 复数代数形式的乘除运算 .ppt
  • 小学二年级数学《角的初步认识》精选测试题及参考答案【综合卷】.docx小学二年级数学《角的初步认识》精选测试题及参考答案【综合卷】.docx
  • 2017-2018学年高中数学人教A版选修1-2创新应用课件:第三章 3-2 复数代数形式的四则运算 第1课时 复数代数形式的加减运算及其几何意义 .ppt2017-2018学年高中数学人教A版选修1-2创新应用课件:第三章 3-2 复数代数形式的四则运算 第1课时 复数代数形式的加减运算及其几何意义 .ppt
  • 小学二年级数学《角的初步认识》精选测试题及参考答案【最新】.docx小学二年级数学《角的初步认识》精选测试题及参考答案【最新】.docx
  • 2017-2018学年高中数学人教A版选修1-2创新应用课件:第三章 3-1系数的扩充和复数的概念 第2课时 复数的几何意义 .ppt2017-2018学年高中数学人教A版选修1-2创新应用课件:第三章 3-1系数的扩充和复数的概念 第2课时 复数的几何意义 .ppt
  • 2017-2018学年高中数学人教A版选修1-1课件:第二章 2-3 第1课时 抛物线及其标准方程 .PPT2017-2018学年高中数学人教A版选修1-1课件:第二章 2-3 第1课时 抛物线及其标准方程 .PPT
  • 小学二年级数学《角的初步认识》精选测试题及参考答案【培优b卷】.docx小学二年级数学《角的初步认识》精选测试题及参考答案【培优b卷】.docx
  • 2017-2018学年高中数学人教A版选修1-1课件:第二章 2-2 第2课时 双曲线的简单几何性质 .PPT2017-2018学年高中数学人教A版选修1-1课件:第二章 2-2 第2课时 双曲线的简单几何性质 .PPT
  • 小学二年级数学《角的初步认识》精选测试题及参考答案【名师推荐】.docx小学二年级数学《角的初步认识》精选测试题及参考答案【名师推荐】.docx
  • 2017-2018学年高中数学人教A版选修1-1课件:第三章 3-4 第1课时变化率问题、导数的概念 .PPT2017-2018学年高中数学人教A版选修1-1课件:第三章 3-4 第1课时变化率问题、导数的概念 .PPT
  • 2017-2018学年高中数学人教A版选修1-1课件:第三章 3-3 第2课时函数的极值与导数 .PPT2017-2018学年高中数学人教A版选修1-1课件:第三章 3-3 第2课时函数的极值与导数 .PPT
  • 小学二年级数学《角的初步认识》精选测试题及参考答案ab卷.docx小学二年级数学《角的初步认识》精选测试题及参考答案ab卷.docx
  • 2017-2018学年高中数学人教A版选修1-1课件:第三章 3-2 导数的计算 .PPT2017-2018学年高中数学人教A版选修1-1课件:第三章 3-2 导数的计算 .PPT
  • 小学二年级数学《角的初步认识》精选测试题及参考答案1套.docx小学二年级数学《角的初步认识》精选测试题及参考答案1套.docx
  • 2017-2018学年高中数学人教A版选修1-1课件:第3章 导数及其应用3-3-3 .ppt2017-2018学年高中数学人教A版选修1-1课件:第3章 导数及其应用3-3-3 .ppt
  • 小学二年级数学《角的初步认识》精选测试题及参考答案.docx小学二年级数学《角的初步认识》精选测试题及参考答案.docx
  • 2017-2018学年高中数学人教A版选修1-1课件:第3章 导数及其应用3-3-1 .ppt2017-2018学年高中数学人教A版选修1-1课件:第3章 导数及其应用3-3-1 .ppt
  • 小学二年级数学《角的初步认识》精选测试题及免费答案.docx小学二年级数学《角的初步认识》精选测试题及免费答案.docx
  • 2017-2018学年高中数学人教A版选修1-1课件:第2章 圆锥曲线与方程2-1-1 .ppt2017-2018学年高中数学人教A版选修1-1课件:第2章 圆锥曲线与方程2-1-1 .ppt
  • 2017-2018学年高中数学人教A版选修1-1课件:第17课时函数的极值与导数( 40张) .ppt2017-2018学年高中数学人教A版选修1-1课件:第17课时函数的极值与导数( 40张) .ppt
  • 小学二年级数学《角的初步认识》精选测试题及免费下载答案.docx小学二年级数学《角的初步认识》精选测试题及免费下载答案.docx
  • 小学二年级数学《角的初步认识》精选测试题及下载答案.docx小学二年级数学《角的初步认识》精选测试题及下载答案.docx
  • 2017-2018学年高中数学人教A版选修1-1课件:第14课时变化率与导数( 37张) .ppt2017-2018学年高中数学人教A版选修1-1课件:第14课时变化率与导数( 37张) .ppt
  • 2017-2018学年高中数学人教A版选修1-1课件:章末整合提升2 .ppt2017-2018学年高中数学人教A版选修1-1课件:章末整合提升2 .ppt
  • 小学二年级数学《角的初步认识》精选测试题及一套答案.docx小学二年级数学《角的初步认识》精选测试题及一套答案.docx
  • 2017-2018学年高中数学人教A版选修1-1课件:章末整合提升1 .ppt2017-2018学年高中数学人教A版选修1-1课件:章末整合提升1 .ppt
  • 2017-2018学年高中数学人教A版选修1-1课件:1-1-2、1-1-3 .ppt2017-2018学年高中数学人教A版选修1-1课件:1-1-2、1-1-3 .ppt
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1