分享
分享赚钱 收藏 举报 版权申诉 / 15

类型安徽省2023中考数学 第4章 三角形高分突破微专项1-4.docx

  • 上传人:a****
  • 文档编号:982872
  • 上传时间:2025-12-21
  • 格式:DOCX
  • 页数:15
  • 大小:372.77KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    安徽省2023中考数学 第4章 三角形高分突破微专项1-4 安徽省 2023 中考 数学 三角形 高分 突破 专项
    资源描述:

    1、高分突破微专项1中点模型强化训练类型1利用三角形的中位线定理解题1.如图,在ABC中,点D,E,F分别是AB,AC,BC的中点,已知ADE=45,则CFE的度数为(B)A.40B.45C.50D.552.如图所示,M是ABC的边BC的中点,AN平分BAC,BNAN于点N,连接MN,若AB=8,MN=2,则AC的长是(B)A.10B.12C.14D.163.如图,在RtABC中,B=90,AB=25,BC=3,E是AC的中点,延长BC至点F,使CF=12BC,连接EF,则EF的长为14.类型2利用“直角三角形斜边上的中线等于斜边的一半”解题4.如图,在ABC中,BC=18,BDAC于点D,CEA

    2、B于点E,F,G分别为BC,DE的中点,连接FG,若ED=10,则FG的长为214.5.如图,已知在ABC中,B=25,点D在边CB上,且DAB=90,AC=12BD.则BAC的度数为105.类型3利用等腰三角形“三线合一”的性质解题6.如图,在ABC中,AB=AC=5,BC=6,点M为BC的中点,过点M作MNAC于点N,则MN的长为125.类型4倍长中线、类中线,构造全等三角形解题7.2019山东临沂如图,在ABC中,ACB=120,BC=4,点D为AB的中点,DCBC,则ABC的面积是83.8.如图,在ABC中,AD是中线,BAC=BCA,点E在BC的延长线上,CE=AB,连接AE.求证:

    3、AE=2AD.证明:如图,延长AD至点F,使DF=DA,连接CF.在ABD和FCD中,AD=FD,ADB=FDC,BD=CD,ABDFCD,AB=FC,B=DCF.CE=AB,BAC=BCA,ACE=BAC+B,CF=CE,ACE=BCA+DCF=ACF.在ACF和ACE中,AC=AC,ACF=ACE,CF=CE,ACFACE,AE=AF=2AD.9.如图,在ABC中,AD交BC于点D,点E是BC的中点,EFAD交CA的延长线于点F,交AB于点G,已知BG=CF,求证:AD为ABC的角平分线.证明:如图,过点C作CHAB,交FE的延长线于点H,则B=ECH,BGE=H.点E是BC的中点,BE=

    4、CE.在BEG和CEH中,B=ECH,BGE=CHE,BE=CE,BEGCEH,BG=CH,又BG=CF,CH=CF,F=H.EFAD,F=CAD,BGE=BAD,又BGE=H,BAD=CAD,AD为ABC的角平分线.高分突破微专项2截长补短法强化训练1.如图,在四边形ABCD中,ADBC,点E是AB上的一个动点,若B=DEC=60,AB=BC.求证:AD+AE=BC.证明:如图,在BC上取点F,使BF=BE,连接EF.AB=BC,BE=BF,AE=FC.B=60,BF=BE,BEF是等边三角形,BF=EF,EFB=60,EFC=180-60=120.ADBC,A=180-B=120=EFC.

    5、B=DEC=60,BEC+BCE=120,BEC+AED=120,AED=BCE,AEDFCE,AD=EF,AD+AE=EF+CF=BF+CF=BC.2.如图,在ABC中,CAB=CBA=45,CA=CB,点E为BC的中点,CNAE交AB于N.(1)求证:1=2;(2)求证:AE=CN+EN.(1)证明:CAB=CBA=45,ACB=90,ACN+1=90.AECN,2+ACN=90,1=2.(2)证明:方法一(截长法):如图(1),在线段AE上截取AM=CN,连接CM.图(1)AC=BC,1=2,AM=CN,ACMCBN,CM=BN,ACM=B=45,MCE=45,B=MCE.在MCE和NB

    6、E中,CM=BN,MCE=B,CE=BE,MCENBE,EM=EN,AE=AM+EM=CN+EN.方法二(补短法):如图(2),延长CN到点M,使CM=AE,连接BM.图(2)CB=CA,1=2,CM=AE,ACECBM,CE=BM=BE,CBM=ACE=90,MBN=45=NBE.在NBM和NBE中,BN=BN,NBM=NBE,BM=BE,NBMNBE,NM=EN,AE=CM=CN+NM=CN+EN.3.如图,在ABC中,AB=AC,点D是边BC下方一点.(1)如图(1),若BAC=60,BDC=120,求证:AD=BD+CD;(2)如图(2),若BAC=90,BDC=90,求证:AD=22

    7、(BD+CD).图(1)图(2)(1)证明:如图(1),延长DC到点E,使CE=BD,连接AE.图(1)BAC=60,BDC=120,ABD+ACD=180.又ACE+ACD=180,ABD=ACE.又AB=AC,CE=BD,ABDACE,AD=AE,BAD=CAE,DAE=BAC=60,ADE是等边三角形,AD=DE=CE+CD=BD+CD.图(2)(2)证明:如图(2),延长DC到点E,使CE=BD,连接AE.BAC=90,BDC=90,ABD+ACD=180,又ACE+ACD=180,ABD=ACE.又AB=AC,CE=BD,ABDACE,AD=AE,BAD=CAE,DAE=BAC=90

    8、,AD=22DE=22(CE+CD)=22(BD+CD).高分突破微专项3“一线三等角”模型强化训练1.如图,在RtABC中,ACB=90,AC=BC=4,M是边AB的中点,E,G分别是边AC,BC上的一点,EMG=45,连接EG,若AE=3,则EG=53.2.2020合肥45中三模改编如图,在ABC中,AB=AC,ABAC,点E是AC的中点,AFBE于点F,连接CF,则AFC=135.3.如图,在RtABC中,C=90,AEB=135,BE=32,DEBE交AB于点D,若DE=2,则AE的长为3.4.如图,已知ABC=90,AD=BC,CE=BD,AE与CD相交于点M,则AMD=45.5.如

    9、图,在矩形ABCD中,CEF是等腰直角三角形,且直角顶点E是AB上的点(点F在CE的左侧),若AB=8,BC=5,则AF的最小值为322.6.如图,已知抛物线y=-12x2与直线AB交于A(-4,-8),B两点,连接AO,BO,若AOB=90,则点B的坐标为(1,-12).7.2019江苏无锡如图,在ABC中,AB=AC=5,BC=45,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则BDE的面积的最大值为8.8.如图,在矩形ABCD中,AB=3,BC=5,点E为BC边上一个动点,连接AE,将线段AE绕点E顺时针旋转90,点A落在点P处,当点P在矩形ABCD外部时,连

    10、接PC,PD.若DPC为直角三角形,则BE的长为3或7+174.高分突破微专项4旋转模型强化训练1.如图,在等腰直角三角形ABC中,BAC=90,点D是ABC所在平面上一点,且BD=3,AD=5,则CD的最小值为(A)A.52-3B.5-32C.2D.12.如图,在四边形ABCD中,ADBC,ABBC,AD=2,BC=3,将CD以点D为旋转中心逆时针旋转90,得到ED,连接AE,CE,则ADE的面积是(A)A.1B.2C.3D.不能确定3.如图,点D为等腰直角三角形ABC斜边AB的中点,DMDN,DM,DN分别交BC,CA于点E,F.(1)当MDN绕点D转动时,求证:DE=DF;(2)若AB=

    11、2,求四边形DECF的面积.(1)证明:连接DC,点D为等腰直角三角形ABC斜边AB的中点,CDAB,CD=DA,CD平分BCA,ECD=DCA=45.DMDN,EDN=90,又CDA=90,CDE=FDA.在CDE和ADF中,DCE=A,CD=AD,CDE=FDA,CDEADF,DE=DF.(2)CDEADF,SCDE=SADF,S四边形DECF=SACD=12CDAD=12.4.如图,在正方形ABCD中,点E,F分别在BC,CD上,且EAF=45,连接EF.(1)求证:EF=BE+DF.(2)若点E,F分别在CB,DC的延长线上,(1)中结论是否仍然成立?请说明理由.(1)证明:如图(1)

    12、,将ABE绕点A逆时针旋转90得到ADG,则C,D,G三点共线,AE=AG,GAD=EAB,GAF=GAD+DAF=EAB+DAF=90-FAE=45,GAF=EAF.又AF=AF,AFGAFE,EF=GF=GD+DF=BE+DF.图(1)图(2)(2)不成立.理由:如图(2),将ABE绕点A逆时针旋转90得到ADG,则点G在射线DC上,AE=AG,GAD=EAB,GAF=90-DAG-BAF=90-BAE-BAF=90-45=45,EAF=GAF.又AF=AF,AEFAGF,EF=GF=DF-DG=DF-BE.高分突破微专项1强化训练1.B点D,E,F分别是AB,AC,BC的中点,DEBC,

    13、EFAB,EFC=B=ADE=45.2.B如图,延长BN交AC于点D.在ANB和AND中,NAB=NAD,AN=AN,ANB=AND=90,ANBAND,AD=AB=8,BN=ND.M是ABC的边BC的中点,DC=2MN=4,AC=AD+CD=12.3.14如图,取AB的中点D,连接DE,CD,则DEBC,DE=12BC,又CF=12BC,DE=CF,四边形DCFE是平行四边形,EF=CD.在RtBCD中,B=90,BD=12AB=5,BC=3,CD=BD2+BC2=14,EF=CD=14.4.214如图,连接EF,DF.BDAC,F为BC的中点,DF=12BC=9.同理,EF=12BC=9,

    14、FE=FD.又点G为DE的中点,FGDE,GE=GD=12DE=5.由勾股定理得FG=EF2-EG2=214.5.105如图,取BD的中点E,连接AE.DAB=90,AE=12BD=ED=EB,EAB=B=25,AED=EAB+B=50.AC=12DB,AC=AE,ACE=AED=50,CAE=180-50-50=80,BAC=CAE+EAB=105.6.125连接AM,AB=AC,点M为BC的中点,AMCM,BM=CM=12BC=3.在RtABM中,AB=5,BM=3,AM=AB2-BM2=4.SAMC=12MNAC=12AMMC,MN=AMMCAC=125.7.83如图,延长CD至点H,使

    15、DH=CD.DCBC,BCD=90.ACB=120,ACD=30.点D为AB的中点,AD=BD.在ADH与BDC中,DH=CD,ADH=BDC,AD=BD,ADHBDC,AH=BC=4,H=BCD=90.又ACH=30,CH=3AH=43,SABC=SACH=12443=83.8.略9.略高分突破微专项2略高分突破微专项3强化训练1.53在RtABC中,ACB=90,AC=BC=4,A=B=45,AB=42.M是边AB的中点,AM=MB=22.易证AEMBMG,AEBM=AMBG,即322=22BG,BG=83,CG=BC-BG=43.在RtECG中,根据勾股定理,得EG=EC2+CG2=53

    16、.2.135如图,过点C作CGAF,交AF的延长线于点G,则EFCG.又点E是AC的中点,AF=FG.CAG+BAF=90=ABF+BAF,CAG=ABF.又AB=CA,AFB=CGA=90,ABFCAG,CG=AF=FG,FCG是等腰直角三角形,CFG=45,AFC=180-CFG=135.3.3如图,过点D作DFAC于点F.AEB=135,CEB=45,CEB是等腰直角三角形.又BE=32,BC=CE=3.根据一线三直角模型,可得EFDBCE,FED=FDE=45.又DE=2,EF=DF=1.易证AFDACB,AFAC=DFBC.设AF=a,则aa+4=13,a=2,AE=AF+EF=2+

    17、1=3.4.45如图,过点A作ANAB,且AN=BD,连接DN,CN.AD=BC,DANCBD,AND=CDB,DN=DC.又AND+NDA=90,CDB+NDA=90,NDC=90,CDN是等腰直角三角形,NCD=45.AN=DB,CE=BD,AN=CE.又ANCE,四边形ANCE是平行四边形,CNAE,AMD=NCD=45.5.322如图,过点F作FGAB于点G,在GB上截取GH=FG,连接FH,则FGH是等腰直角三角形,FHG=45.CEF=90,B=90,FEG+BEC=90=ECB+BEC,FEG=ECB.又EF=CE,FGE=CBE=90,EFGCEB,EG=CB,BE=FG=HG

    18、,BH=EG=BC=5,即BH为定值,点H为定点.延长HF交AD于点I,则AIH是等腰直角三角形,AI=AH=AB-BH=3,IH=32,当 AFIH时,AF取最小值,最小值为322.6.(1,-12)如图,分别过点A,B作ADx轴于点D,BCx轴于点C.ADO=OCB=AOB=90,根据“一线三直角”模型,可得AODOBC,ODAD=BCOC.A(-4,-8),OD=4,AD=8,BCOC=ODAD=12,OC=2BC.设BC=a,则OC=2a,点B的坐标为(2a,-a),代入y=-12x2,得-a=-12(2a)2,解得a1=12,a2=0(不符合题意,舍去),故点B的坐标为(1,-12)

    19、.7.8过点E作EHAB,垂足为点H,过点C作CGAB,垂足为点G,如图,设BD=x,BC=45,易得cosABC=255,BG=8,DG=8-x.易证EDHDCG,EH=DG=8-x.SBDE=12(8-x)x=-12x2+4x=-12(x-4)2+8,当x=4时,面积取最大值,为8.8.3或7+174分PDC=90和DPC=90两种情况讨论.当PDC=90时,如图(1),易证ABE是等腰直角三角形,BE=AB=3.当DPC=90时,如图(2),过点P作BC的垂线,与BC的延长线交于点M,与AD的延长线交于点N,则MNAD.易证ABEEMP,CMPPND,MP=BE,EM=AB=3,CMPN

    20、=MPND.设BE=x,则MP=x,PN=3-x,CM=x-2,x-23-x=xx-2,x1=7+174,x2=7-174(不合题意,舍去).综上所述,BE的长为3或7+174.图(1)图(2)高分突破微专项4强化训练1.A如图,以点A为旋转中心将ACD顺时针旋转90得到ABE,则CD=BE.连接DE,易知ADE是等腰直角三角形,DE=2AD=52.当点B在线段DE上时,BE取最小值,CD的最小值为DE-BD=52-3.2.A如图,过点E作ENAD交AD的延长线于点N,过点C作CMDN于点M.由旋转可知,CD=DE,CDE=90,易证ENDDMC,EN=DM=AM-AD=BC-AD=1,故SADE=1221=1,故选A.3.略4.略

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:安徽省2023中考数学 第4章 三角形高分突破微专项1-4.docx
    链接地址:https://www.ketangku.com/wenku/file-982872.html
    相关资源 更多
  • 2014-2015学年高中地理天津同步课件:1.4地域文化与人口17张(湘教版必修2).ppt2014-2015学年高中地理天津同步课件:1.4地域文化与人口17张(湘教版必修2).ppt
  • 安徽省庐江县白湖中学2018-2019学年七年级(上)数学期末模拟试题(解析版).docx安徽省庐江县白湖中学2018-2019学年七年级(上)数学期末模拟试题(解析版).docx
  • 2014-2015学年高中地理四川同步课件:5、2交通运输方式和布局变化的影响16张(新人教版必修2).ppt2014-2015学年高中地理四川同步课件:5、2交通运输方式和布局变化的影响16张(新人教版必修2).ppt
  • 安徽省庐江县六校联盟2022届高三数学第四次联考试题理.docx安徽省庐江县六校联盟2022届高三数学第四次联考试题理.docx
  • 2014-2015学年高中地理四川同步课件:5、1交通运输方式和布局36张(新人教版必修2).ppt2014-2015学年高中地理四川同步课件:5、1交通运输方式和布局36张(新人教版必修2).ppt
  • 安徽省庐江县六校联盟2022届高三数学第四次联考试题文.docx安徽省庐江县六校联盟2022届高三数学第四次联考试题文.docx
  • 2014-2015学年高中地理四川同步课件:5.2自然地理环境的差异性38张(新人教版必修1).ppt2014-2015学年高中地理四川同步课件:5.2自然地理环境的差异性38张(新人教版必修1).ppt
  • 2014-2015学年高中地理四川同步课件:5.2产业转移—以东亚为例29张(新人教版必修3).ppt2014-2015学年高中地理四川同步课件:5.2产业转移—以东亚为例29张(新人教版必修3).ppt
  • 2014-2015学年高中地理四川同步课件:5.2产业转移—以东亚为例25张(新人教版必修3).ppt2014-2015学年高中地理四川同步课件:5.2产业转移—以东亚为例25张(新人教版必修3).ppt
  • 2014-2015学年高中地理四川同步课件:5.2产业转移—以东亚为例16张(新人教版必修3).ppt2014-2015学年高中地理四川同步课件:5.2产业转移—以东亚为例16张(新人教版必修3).ppt
  • 安徽省庐江县乐桥第二中学2018-2019学年七年级(上)数学期末模拟试题(解析版).docx安徽省庐江县乐桥第二中学2018-2019学年七年级(上)数学期末模拟试题(解析版).docx
  • 2014-2015学年高中地理四川同步课件:5.1资源的跨区域搭配—以我国西气东输为例30张(新人教版必修3).ppt2014-2015学年高中地理四川同步课件:5.1资源的跨区域搭配—以我国西气东输为例30张(新人教版必修3).ppt
  • 2014-2015学年高中地理四川同步课件:5.1资源的跨区域搭配—以我国西气东输为例26张(新人教版必修3).ppt2014-2015学年高中地理四川同步课件:5.1资源的跨区域搭配—以我国西气东输为例26张(新人教版必修3).ppt
  • 2014-2015学年高中地理四川同步课件:5.1资源的跨区域搭配—以我国西气东输为例25张(新人教版必修3).ppt2014-2015学年高中地理四川同步课件:5.1资源的跨区域搭配—以我国西气东输为例25张(新人教版必修3).ppt
  • 安徽省庐江县乐桥中学高一地理上学期第二次月考试题.docx安徽省庐江县乐桥中学高一地理上学期第二次月考试题.docx
  • 安徽省庐江县乐桥中学2015-2016学年高一上学期第一次月考地理试卷 WORD版无答案.docx安徽省庐江县乐桥中学2015-2016学年高一上学期第一次月考地理试卷 WORD版无答案.docx
  • 2014-2015学年高中地理四川同步课件:4.3传统工业区与新工业区32张(新人教版必修2).ppt2014-2015学年高中地理四川同步课件:4.3传统工业区与新工业区32张(新人教版必修2).ppt
  • 安徽省庐江中学2019-2020学年高二(下)期中考试物理试卷(PDF版无答案).docx安徽省庐江中学2019-2020学年高二(下)期中考试物理试卷(PDF版无答案).docx
  • 2014-2015学年高中地理四川同步课件:4.2区域工业化与城市化—以我国珠江三角洲地区为例26张(新人教版必修3).ppt2014-2015学年高中地理四川同步课件:4.2区域工业化与城市化—以我国珠江三角洲地区为例26张(新人教版必修3).ppt
  • 安徽省庐巢七校联考2022-2023学年高二数学下学期3月月考试题(Word版附解析).docx安徽省庐巢七校联考2022-2023学年高二数学下学期3月月考试题(Word版附解析).docx
  • 安徽省广德县实验中学2020-2021学年高二上学期10月月考化学试卷 WORD版含答案.docx安徽省广德县实验中学2020-2021学年高二上学期10月月考化学试卷 WORD版含答案.docx
  • 2014-2015学年高中地理四川同步课件:4.1工业的区位选择44张(新人教版必修2).ppt2014-2015学年高中地理四川同步课件:4.1工业的区位选择44张(新人教版必修2).ppt
  • 2014-2015学年高中地理四川同步课件:4.1区域农业发展--以我国东北地区为例30张(新人教版必修3).ppt2014-2015学年高中地理四川同步课件:4.1区域农业发展--以我国东北地区为例30张(新人教版必修3).ppt
  • 2014-2015学年高中地理四川同步课件:4.1区域农业发展--以我国东北地区为例21张(新人教版必修3).ppt2014-2015学年高中地理四川同步课件:4.1区域农业发展--以我国东北地区为例21张(新人教版必修3).ppt
  • 2014-2015学年高中地理四川同步课件:3.3水资源的合理运用27张(新人教版必修一).ppt2014-2015学年高中地理四川同步课件:3.3水资源的合理运用27张(新人教版必修一).ppt
  • 2014-2015学年高中地理四川同步课件:3.3水资源的合理运用25张(新人教版必修一).ppt2014-2015学年高中地理四川同步课件:3.3水资源的合理运用25张(新人教版必修一).ppt
  • 安徽省巢湖市第三中学九年级上学期化学12月月考试卷(解析版).docx安徽省巢湖市第三中学九年级上学期化学12月月考试卷(解析版).docx
  • 2014-2015学年高中地理四川同步课件:3.3以畜牧业为主的农业地域类型35张(新人教版必修2).ppt2014-2015学年高中地理四川同步课件:3.3以畜牧业为主的农业地域类型35张(新人教版必修2).ppt
  • 安徽省巢湖市烔炀中学2017-2018学年高三上学期期中考试 历史试题.docx安徽省巢湖市烔炀中学2017-2018学年高三上学期期中考试 历史试题.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1