分享
分享赚钱 收藏 举报 版权申诉 / 9

类型新教材2022版新高考数学人教B版一轮复习学案:第6章 第4节 复数 WORD版含解析.DOC

  • 上传人:a****
  • 文档编号:258651
  • 上传时间:2025-11-22
  • 格式:DOC
  • 页数:9
  • 大小:334.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    新教材2022版新高考数学人教B版一轮复习学案:第6章 第4节 复数 WORD版含解析 新教材 2022 新高 学人 一轮 复习 WORD 解析
    资源描述:

    1、高考资源网() 您身边的高考专家第4节复数一、教材概念结论性质重现1复数的有关概念内容意义备注复数的定义一般地,当a与b都是实数时,称abi为复数,其中实部为a,虚部为b,i称为虚数单位abi为实数b0;abi为虚数b0;abi为纯虚数a0且b0复数相等abicdiac且bd(a,b,c,dR)共轭复数zabi,abi(a,bR)复数a(aR)的共轭复数是a复平面建立直角坐标系来表示复数的平面叫做复平面,x轴称为实轴,y轴称为虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数复数向量(a,b)的长度称为复数zabi(a,bR)的模(或绝对值),记作|z|或|abi|z|abi|(1)

    2、复数构成的集合叫做复数集,记为C.(2)in(nN*)具有周期性,且最小正周期为4,其性质如下:i4n1(nN*),i4n1i(nN),i4n21(nN),i4n3i(nN);i4ni4n1i4n2i4n30.2复数的几何意义(1)复数加法的几何意义若复数z1,z2对应的向量,不共线,则复数z1z2是以,为两邻边的平行四边形的对角线所对应的复数(2)复数减法的几何意义复数z1z2是所对应的复数3复数的加、减、乘、除运算法则设z1abi,z2cdi(a,b,c,dR),则(1)加法:z1z2(abi)(cdi)(ac)(bd)i.(2)减法:z1z2(abi)(cdi)(ac)(bd)i.(3)

    3、乘法:z1z2(abi)(cdi)(acbd)(adbc)i.(4)除法:i(cdi0)4常用结论(1i)22i,i,i,z|z|2|2,|z1z2|z1|z2|,|zn|z|n.二、基本技能思想活动体验1判断下列说法正误,对的打“”,错的打“”(1)方程x2x10没有解()(2)复数zabi(a,bR)中,虚部为bi.()(3)复数中有相等复数的概念,因此复数可以比较大小()(4)原点是实轴与虚轴的交点()(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模()2若复数z(x21)(x1)i为纯虚数,则实数x的值为()A1B0C1D1或1A解析:因为z为纯虚数,

    4、所以所以x1.3在复平面内,复数65i,23i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是()A48iB82iC24iD4iC解析:因为A(6,5),B(2,3),所以线段AB的中点C(2,4),则点C对应的复数为z24i.4若复数z满足iz22i(i为虚数单位),则z的共轭复数在复平面内对应的点所在的象限是()A第一象限B第二象限C第三象限D第四象限B解析:由题意,因为z22i,所以22i,则z的共轭复数对应的点在第二象限5设z2i,则|z|_.1解析:因为z2i2i2ii,所以|z|1.考点1复数的有关概念基础性1(多选题)下面关于复数的四个命题中,真命题是()A若复数z

    5、R,则RB若复数z满足z2R,则zRC若复数z满足R,则zRD若复数z1,z2的满足z1z2R,则z1AC解析:设zabi,对于A项,若zR,则b0,此时aR,所以A正确;对于B项,z2(abi)2a2b22abiR,则ab0,所以a0或b0,则z不一定为实数,所以B错误;对于C项,R,则b0,所以zR,所以C正确;对于D项,设z11i,z222i,则z1z24R,但z1,D错误故选AC.2(2020潍坊一模)已知z为复数,i为虚数单位若复数为纯虚数,则|z|()A2B.C1D.C解析:设zabi(a,bR),所以复数.因为复数为纯虚数,所以a2b21,a0.所以|z|1.3(2020青岛二模

    6、)若复数z满足(i)z|i|(其中i是虚数单位),则复数z的共轭复数的虚部为()A Bi CDi C解析:由(i)z|i|得(i)z2,所以zi,所以i,所以的虚部为.解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可(2)解题时一定要先看复数是不是abi(a,bR)的形式,以确定实部和虚部考点2复数的几何意义应用性(2020嘉祥模拟)欧拉公式eixcos xisin x(i是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数

    7、的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”根据欧拉公式可知,ei表示的复数位于复平面中的()A第一象限B第二象限C第三象限D第四象限A解析:根据题意eixcos xisin x,故eicosisini,表示的复数在第一象限1本例若把条件改为“已知复数z满足z(12i)43i(i为虚数单位)”,求复数在复平面内对应的点所在的象限解:因为z(12i)43i,则z2i,故2i,对应的点在第一象限2本例若把条件改为“设复数z满足|zi|1,z在复平面内对应的点为(x,y)”,求x,y满足的关系式解:由题意可得:zxyi,zix(y1)i,|zi|1,故x2(y1)21.3本例若把条件改为

    8、“ABC的三个顶点对应的复数分别为z1,z2,z3,复数z满足|zz1|zz2|zz3|”,z对应的点是否为ABC的外心?解:是由复数的几何意义知,复数z对应的点到ABC三个顶点距离都相等,故z对应的点是ABC的外心与复数几何意义相关的问题的一般解法第一步,进行简单的复数运算,将复数化为标准的代数形式;第二步,把复数问题转化为复平面的点之间的关系,依据是复数abi与复平面上的点(a,b)一一对应若复数z在复平面内对应的点在第四象限,求实数m的取值范围解:zi,所以所以1m1,故m的取值范围为(1,1)考点3复数的运算综合性考向1复数的乘法运算(1)(2020山东省实验高考预测)已知复数z(12

    9、i)(1ai)(aR),若zR,则实数a()ABC2D2D解析:因为z(12i)(1ai)(12a)(a2)i,又因为zR,所以a20,解得a2.(2)(2020柳州一模)若复数z满足i,其中i为虚数为单位,则z()A1iB1iC1iD1iA解析:因为i,所以i(1i)1i,所以z1i.复数乘法运算的要点复数的乘法类似于多项式的乘法,可将含有虚数单位i的看作一类同类项,不含i的看作另一类同类项,分别合并即可,但要注意把i2换成1.考向2复数的除法运算(1)(2020毕节一诊)已知i为虚数单位,若z(1i)22i,则z()AiBiCi DiA解析:由z(1i)22i得zi.(2)已知aR,i是虚

    10、数单位,若复数zR,则复数z_.解析:因为复数ziR,所以0,即a3.则复数z.求解复数除数问题的注意点除法的关键是分子、分母同乘分母的共轭复数,解题中要注意把i的幂写成最简形式考向3复数运算的综合应用(1)(2020银川三模)若复数z与其共轭复数满足z213i,则|z|()A. B.C2 D.A解析:设zabi(a,bR),则z2abi2a2bia3bi13i,故a1,b1,z1i,|z|.(2)已知复数z1i(i是虚数单位),则()A1B1 CiDiA解析:因为z1i,所以z2(1i)22i,则z2z1i,所以1.故选A.(1)先利用复数的运算法则化简,一般化为abi(a,bR)的形式,再结合相关知识解答(2)运用复数的法则进行运算时,要注意运算顺序,先算乘除,后算加减,有括号的要先算括号里面的1.等于()AiBiCiDiD解析:i.2已知aR,i是虚数单位若zai,z4,则a为()A1或1B1C1D不存在的实数A解析:由题意得ai,故z3a24a1.3若复数z满足z(2i)(2i)(34i),则|z|等于()AB3 C5D25C解析:由题意z(2i)(2i)(34i)105i,则z5,所以|z|5.高考资源网版权所有,侵权必究!

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:新教材2022版新高考数学人教B版一轮复习学案:第6章 第4节 复数 WORD版含解析.DOC
    链接地址:https://www.ketangku.com/wenku/file-258651.html
    相关资源 更多
  • 江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc
  • 江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc
  • 江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx
  • 湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc
  • 湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc
  • 湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc
  • 湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc
  • 江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc
  • 江西省重点高中2022学年高一数学上学期第三次月考试题.docx江西省重点高中2022学年高一数学上学期第三次月考试题.docx
  • 湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc
  • 江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc
  • 江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc
  • 湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc
  • 江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1