2023年高考数学一轮复习 第八章 平面解析几何 高考难点突破课二 圆锥曲线的综合问题 第四课时 证明及探索性问题教案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023年高考数学一轮复习 第八章 平面解析几何 高考难点突破课二 圆锥曲线的综合问题 第四课时 证明及探索性
- 资源描述:
-
1、第四课时证明及探索性问题题型一证明问题例1 已知抛物线C:x22py(p0)经过点(2,1).(1)求抛物线C的方程及其准线方程.(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.(1)解由抛物线C:x22py经过点(2,1)得p2.所以抛物线C的方程为x24y,其准线方程为y1.(2)证明抛物线C的焦点为F(0,1).设直线l的方程为ykx1(k0).由得x24kx40.设M(x1,y1),N(x2,y2),则x1x24.直线OM的方程为yx.令y1,得点A的横坐标xA,同理得B
2、的横坐标xB.设点D(0,n),则,(n1)2(n1)2(n1)24(n1)2.令0,即4(n1)20,得n1或n3.综上,以AB为直径的圆经过y轴上的定点(0,1)和(0,3).感悟提升圆锥曲线中的证明问题常见的有:(1)位置关系方面的:如证明直线与曲线相切,直线间的平行、垂直,直线过定点等.(2)数量关系方面的:如存在定值、恒成立、相等等.在熟悉圆锥曲线的定义与性质的前提下,一般采用直接法,通过相关的代数运算证明,但有时也会用反证法证明.训练1 (2021合肥模拟)如图,圆C与x轴相切于点T(2,0),与y轴正半轴相交于两点M,N(点M在点N的下方),且|MN|3.(1)求圆C的方程;(2
3、)过点M任作一条直线与椭圆1相交于两点A,B,连接AN,BN,求证:ANMBNM.(1)解设圆C的半径为r(r0),依题意知,圆心C的坐标为(2,r).因为|MN|3,所以r222,所以r,圆C的方程为(x2)2.(2)证明把x0代入方程(x2)2,解得y1或y4,即点M(0,1),N(0,4).当ABx轴时,可知ANMBNM0.当AB与x轴不垂直时,可设直线AB的方程为ykx1.联立方程消去y得,(12k2)x24kx60.16k224(12k2)0恒成立.设直线AB交椭圆于A(x1,y1),B(x2,y2)两点,则x1x2,x1x2,所以kANkBN0,所以ANMBNM.综合知ANMBNM
4、.题型二探索性问题例2 (2022石家庄模拟)设中心在原点,焦点在x轴上的椭圆E过点,且离心率为,F为E的右焦点,P为E上一点,PFx轴,圆F的半径为PF.(1)求椭圆E和圆F的方程;(2)若直线l:yk(x)(k0)与圆F交于A,B两点,与椭圆E交于C,D两点,其中A,C在第一象限,是否存在k使|AC|BD|?若存在,求l的方程;若不存在,说明理由.解(1)由题意可设椭圆的标准方程为1(ab0),椭圆的离心率e,a2b2c2,a2b,将点代入椭圆的方程得1,联立a2b,解得a2且b1.椭圆E的方程为y21.F(,0),PFx轴,P,圆F的半径为,圆心为(,0),圆F的方程为(x)2y2.(2
5、)不存在满足题意的k,理由如下:由A,B在圆上得|AF|BF|PF|.设点C(x1,y1),D(x2,y2).|CF|2x1,同理|DF|2x2.若|AC|BD|,则|AC|BC|BD|BC|,即|AB|CD|1,4(x1x2)1,由得(4k21)x28k2x12k240,x1x2,41,得12k212k23,无解,故不存在.感悟提升此类问题一般分为探究条件、探究结论两种.若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,否则不存在;若探究结论,则应先求出结论的表达式,再针对其表达式进行讨论,往往涉及对参数的讨论.训练2 椭圆1(ab0)的左、右焦点分别为F1,F2,右顶点为A,
6、上顶点为B,且满足向量0.(1)若A(2,0),求椭圆的标准方程.(2)设P为椭圆上异于顶点的点,以线段PB为直径的圆经过点F1,则是否存在过点F2的直线与该圆相切?若存在,求出其斜率;若不存在,请说明理由.解(1)易知a2,因为0,所以BF1F2为等腰直角三角形,所以bc,由a2b2c2,可知b.故椭圆的标准方程为1.(2)由已知得b2c2,a22c2.设椭圆的标准方程为1,P的坐标为(x0,y0).因为F1(c,0),B(0,c),所以(x0c,y0),(c,c).由题意得0,所以x0cy00.又点P在椭圆上,所以1.由以上两式消去y0可得,3x4cx00.因为点P不是椭圆的顶点,所以x0
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-267653.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
