2022版新高考数学一轮总复习学案:第8章 第8节 曲线与方程 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022版新高考数学一轮总复习学案:第8章 第8节 曲线与方程 WORD版含解析 2022 新高 数学 一轮 复习 曲线 方程 WORD 解析
- 资源描述:
-
1、曲线与方程考试要求1.了解方程的曲线与曲线的方程的对应关系.2.了解解析几何的基本思想和利用坐标法研究几何问题的基本方法.3.能够根据所给条件选择适当的方法求曲线的轨迹方程1曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)0的实数解建立如下的对应关系:那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线提醒:“曲线C是方程f(x,y)0的曲线”是“曲线C上的点的坐标都是方程f(x,y)0的解”的充分不必要条件2求动点的轨迹方程的基本步骤一、易错易误辨析(正确的打“”,错误的打“”)(1)f(x0,y0)0是点P(x0,y0)在曲线f(x,y)0上的充要条件(
2、)(2)方程x2xyx的曲线是一个点和一条直线()(3)动点的轨迹方程和动点的轨迹是一样的()(4)方程y与xy2表示同一曲线()答案(1)(2)(3)(4)二、教材习题衍生1到点F(0,4)的距离比到直线y5的距离小1的动点M的轨迹方程为()Ay16x2By16x2Cx216yDx216yC由题意可知,动点M到点F(0,4)的距离等于到直线y4的距离,故点M的轨迹为以点F(0,4)为焦点,以y4为准线的抛物线,其轨迹方程为x216y.2P是椭圆1上的动点,过P作椭圆长轴的垂线,垂足为M,则PM中点的轨迹方程为()Ax21By21C1D1B设中点坐标为(x,y),则点P的坐标为(x,2y),代
3、入椭圆方程得y21.故选B.3若过点P(1,1)且互相垂直的两条直线l1,l2分别与x轴,y轴交于A,B两点,则AB中点M的轨迹方程为_xy10设M的坐标为(x,y),则A,B两点的坐标分别是(2x,0),(0,2y),连接PM.l1l2,|PM|OM|,而|PM|,|OM|.,化简,得xy10,即为所求的轨迹方程4已知线段AB的长为6,直线AM,BM相交于M,且它们的斜率之积是,则点M的轨迹方程是_1(x3)以AB所在直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图略),则A(3,0),B(3,0)设点M的坐标为(x,y),则直线AM的斜率kAM(x3),直线BM的斜率kBM(x
4、3)由已知有(x3),化简整理得点M的轨迹方程为1(x3) 考点一直接法求轨迹方程 利用直接法求轨迹方程(1)利用直接法求解轨迹方程的关键是根据条件准确列出方程,然后进行化简(2)运用直接法应注意的问题在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能忽视的;若方程的化简过程是恒等变形,则最后的验证可以省略典例1已知动点P(x,y)与两定点M(1,0),N(1,0)连线的斜率之积等于常数(0)(1)求动点P的轨迹C的方程;(2)试根据的取值情况讨论轨迹C的形状解(1)由题意可知,直线PM与PN的斜率均存在且均不为零,所以kPMkPN,整
5、理得x21(0,x1)即动点P的轨迹C的方程为x21(0,x1)(2)当0时,轨迹C为中心在原点,焦点在x轴上的双曲线(除去顶点);当10时,轨迹C为中心在原点,焦点在x轴上的椭圆(除去长轴的两个端点);当1时,轨迹C为以原点为圆心,1为半径的圆除去点(1,0),(1,0)当1时,轨迹C为中心在原点,焦点在y轴上的椭圆(除去短轴的两个端点)点评:(1)若曲线上的动点满足的条件是一些几何量的等量关系,则可用直接法,其一般步骤是:设点列式化简检验求动点的轨迹方程时要注意检验,即除去多余的点,补上遗漏的点(2)若是只求轨迹方程,则把方程求出,把变量的限制条件附加上即可;若是求轨迹,则要说明轨迹的形状
6、、位置、大小等1(2020全国卷)在平面内,A,B是两个定点,C是动点,若1,则C的轨迹为()A圆B椭圆 C抛物线D直线A以AB所在直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图略),设A(a,0),B(a,0),C(x,y),则(xa,y),(xa,y),1,(xa)(xa)yy1,x2y2a21,点C的轨迹为圆,故选A.2已知两点M(1,0),N(1,0)且点P使,成公差小于0的等差数列,则点P的轨迹是什么曲线?解设P(x,y),由M(1,0),N(1,0)得(1x,y),(1x,y),(2,0),所以2(1x),x2y21,2(1x)于是,是公差小于0的等差数列等价于即所以
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-269613.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
