分享
分享赚钱 收藏 举报 版权申诉 / 5

类型江苏版2018年高考数学一轮复习专题2.11函数与方程练.doc

  • 上传人:a****
  • 文档编号:279541
  • 上传时间:2025-11-22
  • 格式:DOC
  • 页数:5
  • 大小:138KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    江苏 2018 年高 数学 一轮 复习 专题 2.11 函数 方程
    资源描述:

    1、专题2.11 函数与方程一、填空题1若函数f(x)axb有一个零点是2,那么函数g(x)bx2ax的零点为_【答案】0,【解析】由已知得b2a,所以g(x)2ax2axa(2x2x)令g(x)0,得x10,x2.2(2017苏州期末)函数f(x)2xx32在区间(0,2)内的零点个数是_【答案】1【解析】因为函数y2x,yx3在R上均为增函数,故函数f(x)2xx32在R上为增函数,又f(0)0,f(2)0,故函数f(x)2xx32在区间(0,2)内只有一个零点3函数f(x)|x|k有两个零点,则实数k的取值范围是_【答案】(0,)4(2017徐州月考)若函数f(x)3ax12a在区间(1,1

    2、)内存在一个零点,则a的取值范围是_【答案】(,1)【解析】当a0时,f(x)1与x轴无交点,不合题意,所以a0;函数f(x)3ax12a在区间(1,1)内是单调函数,所以f(1)f(1)0,即(5a1)(a1)0,解得a1或a.5若函数f(x)ax2x1有且仅有一个零点,则实数a的取值为_【答案】0或【解析】当a0时,函数f(x)x1为一次函数,则1是函数的零点,即函数仅有一个零点;当a0时,函数f(x)ax2x1为二次函数,并且仅有一个零点,则一元二次方程ax2x10有两个相等实根14a0,解得a.综上,当a0或a时,函数仅有一个零点6函数f(x)3x7ln x的零点位于区间(n,n1)(

    3、nN)内,则n_.【答案】2【解析】求函数f(x)3x7ln x的零点,可以大致估算两个相邻自然数的函数值,如f(2)1ln 2,由于ln 2ln e1,所以f(2)0,f(3)2ln 30,所以函数f(x)的零点位于区间(2,3)内,故n2.7函数f(x)4cos2cos2sin x|ln(x1)|的零点个数为_【答案】28已知函数f(x)若函数g(x)f(x)m有3个零点,则实数m的取值范围是_【答案】(0,1)【解析】画出f(x)的图象,如图由函数g(x)f(x)m有3个零点,结合图象得:0m1,即m(0,1)二、解答题9已知函数f(x)x22exm1,g(x)x(x0)(1)若yg(x

    4、)m有零点,求m的取值范围;(2)确定m的取值范围,使得g(x)f(x)0有两个相异实根10已知关于x的二次方程x22mx2m10有两根,其中一根在区间(1,0)内,另一根在区间(1,2)内,求m的取值范围解由条件,抛物线f(x)x22mx2m1与x轴的交点分别在区间(1,0)和(1,2)内,如图所示,得即m.故m的取值范围是.能力提升题组11(2017苏州调研)已知函数f(x)若函数g(x)f(x)2x恰有三个不同的零点,则实数m的取值范围是_【答案】(1,2由题意得g(x)又函数g(x)恰有三个不同的零点,所以方程g(x)0的实根2,3和1都在相应范围上,即10.若存在实数b,使得关于x的方程f(x)b有三个不同的根,则m的取值范围是_【答案】(3,)【解析】在同一坐标系中,作yf(x)与yb的图象当xm时,x22mx4m(xm)24mm2,要使方程f(x)b有三个不同的根,则有4mm20.又m0,解得m3.14(2017南通阶段检测)是否存在这样的实数a,使函数f(x)x2(3a2)xa1在区间1,3上恒有一个零点,且只有一个零点?若存在,求出a的取值范围;若不存在,说明理由综上所述,a的取值范围是(1,).

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:江苏版2018年高考数学一轮复习专题2.11函数与方程练.doc
    链接地址:https://www.ketangku.com/wenku/file-279541.html
    相关资源 更多
  • 江苏省无锡一中2012-2013学年高二上学期期中考试数学试题(成志班).doc江苏省无锡一中2012-2013学年高二上学期期中考试数学试题(成志班).doc
  • 人教版数学五年级(上册)期末综合素养提升题精品(含答案).docx人教版数学五年级(上册)期末综合素养提升题精品(含答案).docx
  • 江苏省建陵高级中学2014届高三数学午间小练 07.doc江苏省建陵高级中学2014届高三数学午间小练 07.doc
  • 人教版数学五年级(上册)期末综合素养提升题精品(名校卷).docx人教版数学五年级(上册)期末综合素养提升题精品(名校卷).docx
  • 江苏省建陵高级中学2014届高三数学午间小练 05.doc江苏省建陵高级中学2014届高三数学午间小练 05.doc
  • 人教版数学五年级(上册)期末综合素养提升题精品(名师系列).docx人教版数学五年级(上册)期末综合素养提升题精品(名师系列).docx
  • 江苏省建陵高级中学2014届高三数学午间小练 01.doc江苏省建陵高级中学2014届高三数学午间小练 01.doc
  • 人教版数学五年级(上册)期末综合素养提升题精品(名师推荐).docx人教版数学五年级(上册)期末综合素养提升题精品(名师推荐).docx
  • 江苏省建陵高级中学2014届高三数学二轮复习导学案:专题25三角函数.doc江苏省建陵高级中学2014届高三数学二轮复习导学案:专题25三角函数.doc
  • 人教版数学五年级(上册)期末综合素养提升题精品(各地真题).docx人教版数学五年级(上册)期末综合素养提升题精品(各地真题).docx
  • 江苏省建陵高级中学2014届高三数学二轮复习导学案:专题23空间向量与立体几何.doc江苏省建陵高级中学2014届高三数学二轮复习导学案:专题23空间向量与立体几何.doc
  • 人教版数学五年级(上册)期末综合素养提升题精品(历年真题).docx人教版数学五年级(上册)期末综合素养提升题精品(历年真题).docx
  • 江苏省建陵高级中学2014届高三数学二轮复习导学案:专题18数列求通项.doc江苏省建陵高级中学2014届高三数学二轮复习导学案:专题18数列求通项.doc
  • 人教版数学五年级(上册)期末综合素养提升题精品(典优).docx人教版数学五年级(上册)期末综合素养提升题精品(典优).docx
  • 人教版数学五年级(上册)期末综合素养提升题精品(全国通用).docx人教版数学五年级(上册)期末综合素养提升题精品(全国通用).docx
  • 江苏省建陵高级中学2014届高三数学二轮复习导学案:专题13空间垂直关系.doc江苏省建陵高级中学2014届高三数学二轮复习导学案:专题13空间垂直关系.doc
  • 人教版数学五年级(上册)期末综合素养提升题精品(全优).docx人教版数学五年级(上册)期末综合素养提升题精品(全优).docx
  • 江苏省建陵高级中学2014届高三数学二轮复习导学案:专题12划归与转化导学案.doc江苏省建陵高级中学2014届高三数学二轮复习导学案:专题12划归与转化导学案.doc
  • 人教版数学五年级(上册)期末综合素养提升题精品(b卷).docx人教版数学五年级(上册)期末综合素养提升题精品(b卷).docx
  • 江苏省建陵高级中学2014届高三数学二轮复习导学案:专题10函数概念与基本性质导学案.doc江苏省建陵高级中学2014届高三数学二轮复习导学案:专题10函数概念与基本性质导学案.doc
  • 人教版数学五年级(上册)期末综合素养提升题精品(a卷).docx人教版数学五年级(上册)期末综合素养提升题精品(a卷).docx
  • 江苏省建陵高级中学2014届高三数学二轮复习导学案:专题06圆锥曲线(2).doc江苏省建陵高级中学2014届高三数学二轮复习导学案:专题06圆锥曲线(2).doc
  • 人教版数学五年级(上册)期末综合素养提升题精品附答案.docx人教版数学五年级(上册)期末综合素养提升题精品附答案.docx
  • 江苏省建陵高级中学2014届高三数学二轮复习导学案:专题03三角形与向量.doc江苏省建陵高级中学2014届高三数学二轮复习导学案:专题03三角形与向量.doc
  • 河南省鹤壁市浚县二中2019-2020学年高二上学期第二次月考数学试卷 WORD版缺答案.doc河南省鹤壁市浚县二中2019-2020学年高二上学期第二次月考数学试卷 WORD版缺答案.doc
  • 人教版数学五年级(上册)期末综合素养提升题精品带答案.docx人教版数学五年级(上册)期末综合素养提升题精品带答案.docx
  • 江苏省建陵高级中学2014届高三数学一轮复习导学案:计数原理.doc江苏省建陵高级中学2014届高三数学一轮复习导学案:计数原理.doc
  • 人教版数学五年级(上册)期末综合素养提升题精品含答案.docx人教版数学五年级(上册)期末综合素养提升题精品含答案.docx
  • 江苏省建陵高级中学2014届高三数学一轮复习导学案:直接证明和间接证明.doc江苏省建陵高级中学2014届高三数学一轮复习导学案:直接证明和间接证明.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1