[原创]人教版高中数学复习学(教)案(第53讲)直线与平面平行和平面与平面平行.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 原创 人教版 高中数学 复习 53 直线 平面 平行 和平
- 资源描述:
-
1、题目 第九章(B)直线、平面、简单几何体直线与平面平行和平面与平面平行高考要求 1掌握空间直线和平面的位置关系;2掌握直线和平面平行的判定定理和性质定理,灵活运用线面平行的判定定理和性质定理实现“线线”“线面”平行的转化 3掌握空间两个平面的位置关系,掌握两个平面平行的定义;4掌握两个平面平行的判定定理及性质定理,灵活运用面面平行的判定定理和性质定理实现“线面”“面面”平行的转化知识点归纳 1直线和平面的位置关系(1)直线在平面内(无数个公共点);符号表示为:,(2)直线和平面相交(有且只有一个公共点);符号表示为: ,(3)直线和平面平行(没有公共点)用两分法进行两次分类符号表示为: 2线面
2、平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行推理模式:3 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行推理模式:4平行平面:如果两个平面没有公共点,那么这两个平面互相平行5图形表示:画两个平面平行时,通常把表示这两个平面的平行四边形的相邻两边分别画成平行的6平行平面的判定定理: 如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行推理模式:,7平行平面的判定定理推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行推理模式:8
3、平行平面的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行推理模式:9面面平行的另一性质:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面推理模式:题型讲解 例1 如下图,两个全等的正方形ABCD和ABEF所在平面相交于AB,MAC,NFB且AM=FN,求证:MN平面BCE证法一:过M作MPBC,NQBE,P、Q为垂足,连结PQMPAB,NQAB,MPNQ又NQ= BN=CM=MP,MPQN是平行四边形MNPQ,PQ平面BCE而MN平面BCE,MN平面BCE证法二:过M作MGBC,交AB于点G(如下图),连结NGMGBC,BC平面BCE,MG平面BCE,MG平面BC
4、E又=,GNAFBE,同样可证明GN平面BCE又面MGNG=G,平面MNG平面BCE又MN平面MNGMN平面BCE点评:证明直线和平面的平行通常采用如下两种方法:利用直线和平面平行的判定定理,通过“线线”平行,证得“线面”平行;利用两平面平行的性质定理,通过“面面”平行,证得“线面”平行 例2 如下图,正方体ABCDA1B1C1D1中,侧面对角线AB1、BC1上分别有两点E、F,且B1E=C1F求证:EF平面ABCD 证法一:分别过E、F作EMAB于点M,FNBC于点N,连结MNBB1平面ABCD,BB1AB,BB1BCEMBB1,FNBB1EMFN又B1E=C1F,EM=FN故四边形MNFE
5、是平行四边形EFMN又MN在平面ABCD中,EF平面ABCD证法二:过E作EGAB交BB1于点G,连结GF,则=B1E=C1F,B1A=C1B,=FGB1C1BC又EGFG=G,ABBC=B,平面EFG平面ABCD而EF在平面EFG中,EF平面ABCD点评:证明线面平行的常用方法是:证明直线平行于平面内的一条直线;证明直线所在的平面与已知平面平行例3 已知正四棱锥PABCD的底面边长及侧棱长均为13,M、N分别是PA、BD上的点,且PMMA=BNND=58 (1)求证:直线MN平面PBC;(2)求直线MN与平面ABCD所成的角(1)证明:PABCD是正四棱锥,ABCD是正方形连结AN并延长交B
6、C于点E,连结PE ADBC,ENAN=BNND又BNND=PMMA,ENAN=PMMAMNPE又PE在平面PBC内,MN平面PBC(2)解:由(1)知MNPE,MN与平面ABCD所成的角就是PE与平面ABCD所成的角设点P在底面ABCD上的射影为O,连结OE,则PEO为PE与平面ABCD所成的角 由正棱锥的性质知PO=由(1)知,BEAD=BNND=58,BE=在PEB中,PBE=60,PB=13,BE=,根据余弦定理,得PE=在RtPOE中,PO=,PE=,sinPEO=故MN与平面ABCD所成的角为arcsin点评:证线面平行,一般是转化为证线线平行求直线与平面所成的角一般用构造法,作出
7、线与面所成的角本题若直接求MN与平面ABCD所成的角,计算困难,而平移转化为PE与平面ABCD所成的角则计算容易可见平移是求线线角、线面角的重要方法当然,也可以建立坐标系,用向量法求角,后面有专门的介绍例4 如下图,设a、b是异面直线,AB是a、b的公垂线,过AB的中点O作平面与a、b分别平行,M、N分别是a、b上的任意两点,MN与交于点P,求证:P是MN的中点证明:连结AN,交平面于点Q,连结PQb,b平面ABN,平面ABN=OQ,bOQ又O为AB的中点,Q为AN的中点 a,a平面AMN且平面AMN=PQ,aPQP为MN的中点点评:本题重点考查直线与平面平行的性质例5 在直三棱柱ABCA1B
8、1C1中,AB1BC1,AB=CC1=a,BC=b(1)设E、F分别为AB1、BC1的中点,求证:EF平面ABC;(2)求证:A1C1AB;(3)求点B1到平面ABC1的距离(1)证明:E、F分别为AB1、BC1的中点,EFA1C1A1C1AC,EFACEF平面ABC (2)证明:AB=CC1,AB=BB1又三棱柱为直三棱柱,四边形ABB1A1为正方形连结A1B,则A1BAB1又AB1BC1,AB1平面A1BC1AB1A1C1又A1C1AA1,A1C1平面A1ABB1A1C1AB(3)解:A1B1AB,A1B1平面ABC1A1到平面ABC1的距离等于B1到平面ABC1的距离过A1作A1GAC1
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-282421.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
