《优化方案》2017高考数学(文江苏专用)一轮复习练习:第八章第4讲 直线与圆、圆与圆的位置关系 WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优化方案 优化方案2017高考数学文江苏专用一轮复习练习:第八章第4讲 直线与圆、圆与圆的位置关系 WORD版含答案 优化 方案 2017 高考 数学 江苏 专用 一轮 复习 练习 第八 直线
- 资源描述:
-
1、高考资源网() 您身边的高考专家1圆(x1)2y21与直线yx的位置关系是_解析:因为圆(x1)2y21的圆心为(1,0),半径r1,所以圆心到直线yx的距离为1r,故圆与直线相交答案:相交2. 圆O1:x2y22x0和圆O2:x2y24y0的位置关系是_解析:圆O1的圆心坐标为(1,0),半径为r11,圆O2的圆心坐标为(0,2),半径r22,故两圆的圆心距O1O2,而r2r11,r1r23,则有r2r1O1O2r1r2,故两圆相交答案:相交3过坐标原点且与圆x24xy220相切的直线方程为_解析:圆x24xy220的圆心为(2,0),半径为,易知过原点与该圆相切时,直线有斜率设斜率为k,则
2、直线方程为ykx,则,所以k21,所以k1,所以直线方程为yx.答案:yx4(2016台州月考)若经过点P(3,0)的直线与圆x2y24x2y30相切,则圆心坐标是_;半径为_;切线在y轴上的截距是_解析:(x2)2(y1)22,所以圆心坐标为(2,1),半径为;经过点P的切线方程为yx3,所以在y轴上的截距为3.答案:(2,1)35(2016石家庄质检改编)圆x2y22x4y0与2txy22t0(tR)的位置关系为_解析:由题意知,直线2txy22t0(tR)恒过点(1,2),而12(2)2214(2)50,所以点(1,2)在圆x2y22x4y0内,所以圆x2y22x4y0与2txy22t0
3、(tR)的位置关系为相交答案:相交6在平面直角坐标系xOy中,设点P为圆C:(x1)2y24上的任意一点,点Q(2a,a3)(aR),则线段PQ长度的最小值为_解析:因点Q坐标满足方程x2y60,故可转化为圆上的点到直线的距离,因圆心C到此直线的距离为d,又知半径为2,故所求最小值为2.答案:27已知点P(t,2t)(t0)是圆C:x2y21内一点,直线tx2tym与圆C相切,则直线xym0与圆C的位置关系是_解析:由点P(t,2t)(t0)是圆C:x2y21内一点,得|t|1;又因为直线 tx2tym与圆C相切,所以1,所以|m|1.圆C:x2y21的圆心(0,0)到直线xym0的距离d1r
4、.所以位置关系为相交答案:相交8若直线yxb与曲线y3有公共点,则b的取值范围是_解析:由y3,得(x2)2(y3)24(1y3)所以曲线y3是半圆,如图所示当直线yxb与圆相切时,2.所以b12.由图可知b12.所以b的取值范围是.答案:12,39已知点P是圆C:x2y24x6y30上的一点,直线l:3x4y50.若点P到直线l的距离为2,则符合题意的点P有_个解析:由题意知圆的标准方程为(x2)2(y3)242,所以圆心到直线l的距离d(4,6),故满足题意的点P有2个答案:210已知直线yax3与圆x2y22x80相交于A,B两点,点P(x0,y0)在直线y2x上,且PAPB,则x0的取
5、值范围为_解析:由条件得圆心C(1,0),它到直线l:yax3的距离为d0或a.由PAPB,CACB,得PCl,于是kPC,即.从而由0或0得1x00或0x02.答案:(1,0)(0,2)11已知圆C的圆心与点P(2,1)关于直线yx1对称,直线3x4y110与圆C相交于A,B两点,且AB6,求圆C的方程解:设点P关于直线yx1的对称点为C(m,n),则由故圆心C到直线3x4y110的距离d3,所以圆C的半径的平方r2d218.故圆C的方程为x2(y1)218.12已知点M(3,1),直线axy40及圆(x1)2(y2)24.(1)求过M点的圆的切线方程;(2)若直线axy40与圆相切,求a的
6、值解:(1)圆心C(1,2),半径为r2,当直线的斜率不存在时,方程为x3.由圆心C(1,2)到直线x3的距离d312r知,此时,直线与圆相切当直线的斜率存在时,设方程为y1k(x3),即kxy13k0.由题意知2,解得k.故方程为y1(x3),即3x4y50.故过M点的圆的切线方程为x3或3x4y50.(2)由题意有2,解得a0或a.1若a2b22c2(c0),则直线axbyc0被圆x2y21所截得的弦长为_解析:因为圆心(0,0)到直线axbyc0的距离d,因此根据直角三角形的关系,弦长的一半就等于,所以弦长为.答案:2已知直线xyk0(k0)与圆x2y24交于不同的两点A,B,O是坐标原
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-286811.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
