2023届高三寒假数学二轮微专题45讲 33-与斜率和斜率积有关的定点定值.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届高三寒假数学二轮微专题45讲 33-与斜率和斜率积有关的定点定值 2023 届高三 寒假 数学 二轮 专题 45 33 斜率 有关 定点
- 资源描述:
-
与斜率和,斜率积有关的定点定值1.基本结论:设为椭圆上的定点,是椭圆上一条动弦,直线的斜率分别为;(1) 若,则有,(2) 若,则直线过定点,(3) 若,则有,(4) 若,则直线过定点.2.典例1.(2020新高考卷)已知椭圆C:的离心率为,且过点(1)求的方程:(2)点,在上,且,为垂足证明:存在定点,使得为定值解析:(1)由题意可得:,解得:,故椭圆方程为:.(2) 设点,若直线斜率存在时,设直线的方程为:,代入椭圆方程消去并整理得:,可得,因为,所以,即,根据,代入整理可得:, 所以,整理化简得,因为不在直线上,所以,故,于是的方程为,所以直线过定点直线过定点.当直线的斜率不存在时,可得,由得:,得,结合可得:, 解得:或(舍).此时直线过点.令为的中点,即,若与不重合,则由题设知是的斜边,故,若与重合,则,故存在点,使得为定值.典例2. (2018年1卷)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.解析:(1)由已知得,l的方程为.由已知可得,点的坐标为或.所以的方程为或.(2)当与轴重合时,.当与轴垂直时,为的垂直平分线,所以.当与轴不重合也不垂直时,设的方程为,则,直线、的斜率之和为.由得.将代入得.所以,.则.从而,故、的倾斜角互补,所以.综上,.
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
