2023届高三数学 寒假二轮微专题45讲 38.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届高三数学 寒假二轮微专题45讲 38 2023 届高三 数学 寒假 二轮 专题 45
- 资源描述:
-
1、递推公式求通项的十种类型类型1.等差数列:相邻两项递推形式:为常数,)或者相邻三项递推形式:.这种递推形式下,直接用等差数列的通项公式:即可解决!例1.已知数列的前项和为,满足,则()ABCD解析:, = 1,是以1为首项,以1为公差的等差数列,即,().当时,也适合上式,.故选:A.注1:在等差数列中,有一类比较特殊的递推类型,即,它可以得到两个子数列分别是公差为的等差数列.例2已知数列的前n项和为,且,则数列的前2021项的和为()ABCD解析:,解得,两式相减,得,数列的奇数项与偶数项均为公差为4的等差数列,当为偶数时,当为奇数时,为偶数,根据上式和(*)知,数列的通项公式是,易知是以2
2、为首项,2为公差的等差数列,故,设的前n项和为,则故选:A例3数列中,求的通项公式;解析:(1)由,-,的奇数项与偶数项各自成等差数列,由,n为奇数,n为偶数.类型2.等比数列:相邻两项递推:或.或者相邻三项递推:.注2:在等比数列应用中,有一类比较特殊的递推类型,即,我们可以对其赋值得到一个等比数列.例4数列中,对任意有,若,则()ABCD解析:由任意都有,所以令,则,且,所以是一个等比数列,且公比为,则所以,故选:D.例5已知数列满足且,求通项;解析:当为奇数时,由知数列是公差为2的等差数列,为奇数;当为偶数时,由知数列是公比为2的等比数列,为偶数.类型3.累加型例6若数列满足,求的通项公
3、式.解析:因为,所以,故.类型4.()累乘型.例7数列及其前n项和为满足:,当时,则()ABCD解析:当时,即,所以累乘得:,又,所以所以则. 故选:C.类型5.型(待定系数法)一般形式:为常数,可以构造一个等比数列,只要在每一项同加上一个常数即可,且常数,令,则为等比数列,求出,再还原到,.例8在数列中,求的通项公式.解析:依题意,数列中,所以,所以数列是首项为,公比为的等比数列.例9.(2014年新课标全国1卷)已知数列满足,证明是等比数列,并求的通项公式.解析:显性构造:,.类型6.型例10已知数列的首项,且满足求数列的通项公式;解析:,又,故是以2为首项,2为公比的等比数列,则类型7.
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
