2023届高考数学一轮复习 近8年真题分类汇编 专题13 三角函数的图像与性质.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届高考数学一轮复习 近8年真题分类汇编 专题13 三角函数的图像与性质 2023 高考 数学 一轮 复习 年真题 分类 汇编 专题 13 三角函数 图像 性质
- 资源描述:
-
1、专题13三角函数的图像与性质考试说明:1、能画 的图像,了解三角函数的周期性;2、 理解正弦函数、余弦函数在区间上的性质,理解正切函数在内的单调性;3、了解函数的物理意义;能画出的图像,了解对函数图像变化的影响; 4、了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题。高频考点:1、三角函数的图像及其变换;2、三角函数的性质;3、 三角函数的最值及值域;4、 三角函数图像与性质的综合应用。三角函数的图象与性质是高考的必考点,多以选择题、填空题的形式考查,也常常与三角恒等变换综合以解答题形式出现或以解答题形式考查三角函数图像与性质的综合应用。一、 典例分析1(2021
2、新高考)下列区间中,函数单调递增的区间是AB,CD,2(2021乙卷)函数的最小正周期和最大值分别是A和B和2C和D和23(2020新课标)设函数在,的图象大致如图,则的最小正周期为ABCD4.(2019新课标)下列函数中,以为最小正周期且在区间,单调递增的是ABCD5(2019新课标)设函数,已知在,有且仅有5个零点下述四个结论:在有且仅有3个极大值点;在有且仅有2个极小值点;在单调递增;的取值范围是,其中所有正确结论的编号是ABCD6(2018新课标)已知函数,则A的最小正周期为,最大值为3B的最小正周期为,最大值为4C的最小正周期为,最大值为3D的最小正周期为,最大值为47(2017天津
3、)设函数,其中,若,且的最小正周期大于,则A,B,C,D,8(2016新课标)已知函数,为的零点,为图象的对称轴,且在,上单调,则的最大值为A11B9C7D59(2015新课标)如图,长方形的边,是的中点,点沿着边,与运动,记将动点到,两点距离之和表示为的函数,则的图象大致为ABCD10(2019浙江)设函数,()已知,函数是偶函数,求的值;()求函数的值域二、 真题集训1(2018新课标)函数的最小正周期为ABCD2(2016浙江)设函数,则的最小正周期A与有关,且与有关B与有关,但与无关C与无关,且与无关D与无关,但与有关3(2015新课标)函数的部分图象如图所示,则的单调递减区间为A,B
4、,C,D,4(2015安徽)已知函数,均为正的常数)的最小正周期为,当时,函数取得最小值,则下列结论正确的是A(2)B(2)C(2)D(2)5(2014全国)使函数为偶函数的最小正数ABCD6(2014新课标)设函数,若存在的极值点满足,则的取值范围是A,B,C,D,7(2013大纲版)已知函数,下列结论中不正确的是A的图象关于中心对称B的图象关于对称C的最大值为D既是奇函数,又是周期函数8(2020上海)已知函数,(1)的周期是,求,并求的解集;(2)已知,求的值域9(2015山东)设()求的单调区间;()在锐角中,角,的对边分别为,若,求面积的最大值典例分析答案1(2021新高考)下列区间
5、中,函数单调递增的区间是AB,CD,分析:本题需要借助正弦函数单调增区间的相关知识点求解解答:解:令,则,当时,故选:点评:本题考查正弦函数单调性,是简单题2(2021乙卷)函数的最小正周期和最大值分别是A和B和2C和D和2分析:化简函数的表达式,再利用三角函数的周期,正弦函数的最值求解即可解答:解:,当时,函数取得最大值;函数的周期为,最大值故选:点评:本题考查了辅助角公式、三角函数的周期性与最值,考查了推理能力与计算能力,属于中档题3(2020新课标)设函数在,的图象大致如图,则的最小正周期为ABCD分析:由图象观察可得最小正周期小于,大于,排除,;再由,求得,对照选项,代入计算,即可得到
6、结论解答:解:由图象可得最小正周期小于,大于,排除,;由图象可得,即为,若选,即有,由,可得不为整数,排除;若选,即有,由,可得,成立故选:点评:本题考查三角函数的图象和性质,主要是函数的周期的求法,运用排除法是迅速解题的关键,属于中档题4.(2019新课标)下列函数中,以为最小正周期且在区间,单调递增的是ABCD分析:根据正弦函数,余弦函数的周期性及单调性依次判断,利用排除法即可求解解答:解:不是周期函数,可排除选项;的周期为,可排除选项;在处取得最大值,不可能在区间,单调递增,可排除故选:点评:本题主要考查了正弦函数,余弦函数的周期性及单调性,考查了排除法的应用,属于基础题5(2019新课
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-296532.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
