河南省确山县第二高级中学北师大版高中数学教案:必修一4.2二分法求方程的近似解.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河南省 确山县 第二 高级中学 北师大 高中数学 教案 必修 4.2 二分法 方程 近似
- 资源描述:
-
1、确山二高 一 年级 数学 学科共案时 间: 星 期:主 备 人: 李龙起 使用人:【教学主题】4.2 用二分法求方程的近似解【教学 【教学目标】1.让学生学会用二分法求方程的近似解,知道二分法是科学的数学方法.2.了解用二分法求方程的近似解特点,学会用计算器或计算机求方程的近似解,初步了解算法思想.3.回忆解方程的历史,了解人类解方程的进步历程,激发学习的热情和学习的兴趣.【教学过程】导入新课思路1.(情景导入)师:(手拿一款手机)如果让你来猜这件商品的价格,你如何猜?生1:先初步估算一个价格,如果高了再每隔10元降低报价.生2:这样太慢了,先初步估算一个价格,如果高了每隔100元降低报价.如
2、果低了,每50元上升;如果再高了,每隔20元降低报价;如果低了,每隔10元上升报价生3:先初步估算一个价格,如果高了,再报一个价格;如果低了,就报两个价格和的一半;如果高了,再把报的低价与一半价相加再求其半,报出价格;如果低了,就把刚刚报出的价格与前面的价格结合起来取其和的半价师:在现实生活中我们也常常利用这种方法.譬如,一天,我们华庄校区与锡南校区的线路出了故障,(相距大约3 500米)电工是怎样检测的呢?是按照生1那样每隔10米或者按照生2那样每隔100米来检测,还是按照生3那样来检测呢?生:(齐答)按照生3那样来检测.师:生3的回答,我们可以用一个动态过程来展示一下(展示多媒体课件,区间
3、逼近法).思路2.(事例导入)有12个小球,质量均匀,只有一个球是比别的球重,你用天平称几次可以找出这个球,要求次数越少越好.(让同学们自由发言,找出最好的办法)解:第一次,两端各放六个球,低的那一端一定有重球.第二次,两端各放三个球,低的那一端一定有重球.第三次,两端各放一个球,如果平衡,剩下的就是重球,否则,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?推进新课新知探究提出问题解方程2x-16=0.解方程x2-x-2=0.解方程x3-2x2-x+2=0.解方程(x2-2)(x2-3x+2)=0.我们知道,函数f(x)=lnx+2x-6在区间(2,3)内有零点.进一步的问题是,
4、如何找出这个零点的近似值?“取中点”后,怎样判断所在零点的区间?什么叫二分法?试求函数f(x)=lnx+2x-6在区间(2,3)内零点的近似值.总结用二分法求函数零点近似值的步骤.思考用二分法求函数零点近似值的特点.讨论结果:x=8.x=-1,x=2.x=-1,x=1,x=2.x=,x=,x=1,x=2.如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围.“取中点”,一般地,我们把x=称为区间(a,b)的中点比如取区间(2,3)的中点2.5,用计算器算得f(2.5)0,因为f(2.5)f(3)0,所以零
5、点在区间(2.5,3)内.对于在区间a,b上连续不断且f(a)f(b)0的函数y=f(x),通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection).因为函数f(x)=lnx+2x-6,用计算器或计算机作出函数f(x)=lnx+2x-6的对应值表.x123456789f(x)-4-1.3061.09863.38635.60947.79189.945912.079414.1972由表可知,f(2)0,则f(2)f(3)0,这说明f(x)在区间内有零点x0,取区间(2,3)的中点x1=2.5,用计算器算得f(2.5)-0.084
6、,因为f(2.5)f(3)0,所以x0(2.5,3).同理,可得表(下表)与图象(如图3-1-2-1).区间中点的值中点函数的近似值(2,3)2.5-0.084(2.5,3)2.750.512(2.5,2.75)2.6250.215(2.5,2.625)2.56250.066(2.5,2.5625)2.53-1-2-5-0.009(2.53-1-2-5,2.5625)2.5468750.029(2.53-1-2-5,2.546875)2.53906250.010(2.53-1-2-5,2.5390625)2.535156250.001图3-1-2-1由于(2,3)(2.5,3)(2.5,2.7
7、5),所以零点所在的范围确实越来越小了.如果重复上述步骤,那么零点所在的范围会越来越小(见上表).这样,在一定的精确度下,我们可以在有限次重复相同步骤后,将所得的零点所在区间内的任意一点作为函数零点的近似值.特别地,可以将区间端点作为函数零点的近似值.例如,当精确度为0.01时,由于|2.5390625-2.53-1-2-5|=0.00781250.01,所以,我们可以将x=2.53-1-2-5作为函数f(x)=lnx+2x-6零点的近似值.给定精度,用二分法求函数f(x)的零点近似值的步骤如下:1确定区间a,b,验证f(a)f(b)0,给定精度.2求区间(a,b)的中点c.3计算f(c):a
8、.若f(c)=0,则c就是函数的零点;b.若f(a)f(c)0,则令b=c此时零点x0(a,c);c.若f(c)f(b)0,则令a=c此时零点x0(c,b).4判断是否达到精度;即若|a-b|,则得到零点值a(或b);否则重复步骤24由函数的零点与相应方程的关系,我们可用二分法来求方程的近似解.由于计算量较大,而且是重复相同的步骤,因此,我们可以通过设计一定的计算程序,借助计算器或计算机完成计算.应用示例思路1例1借助计算器或计算机用二分法求方程2x+3x=7的近似解(精确度为0.1).活动:师生共同探讨交流,引出借助函数f(x)=2x+3x-7的图象,能够缩小根所在区间,并根据f(1)0,可
9、得出根所在区间(1,2);引发学生思考,如何进一步有效缩小根所在的区间;共同探讨各种方法,引导学生探寻出通过不断对分区间,有助于问题的解决;用图例演示根所在区间不断被缩小的过程,加深学生对上述方法的理解;引发学生思考在有效缩小根所在区间时,到什么时候才能达到所要求的精确度.学生简述上述求方程近似解的过程.解:原方程即2x+3x-7=0,令f(x)=2x+3x-7,用计算器或计算机做出函数f(x)=2x+3x-7的对应值表与图象(3-1-2-2).x012345678f(x)-6-2310214075142273图3-1-2-2观察图表可知f(1)f(2)0,说明这个函数在区间(1,2)内有零点
10、x0.取区间(1,2)的中点x=1.5,用计算器算得f(1.5)0.33.因为f(1)f(1.5)0,所以x0(1,1.5).再取区间(1,1.5)的中点x=1.25,用计算器算得f(1.25)-0.87.因为f(1.25)f(1.5)0,所以x0(1.25,1.5).同理,可得,x0(1.375,1.5),x0(1.375,1.4375).由于|1.375-1.437 5|=0.06250.1,所以,原方程的近似解可取为1.4375.例2利用计算器,求方程x2-2x-1=0的一个近似解(精确度0.1)活动:教师帮助学生分析:画出函数f(x)=x2-2x-1的图象,如图3-1-2-3所示.从图
11、象上可以发现,方程x2-2x-1=0的一个根x1在区间(2,3)内,另一个根x2在区间(-1,0)内.根据图象,我们发现f(2)=-10,这表明此函数图象在区间(2,3)上穿过x轴一次,即方程f(x)=0在区间(2,3)上有唯一解.图3-1-2-3计算得f()=0,发现x1(2,2.5)(如图3-1-2-3),这样可以进一步缩小x1所在的区间.解:设f(x)=x2-2x-1,先画出函数图象的简图,如图3-1-2-3.因为f(2)=-10,所以在区间(2,3)内,方程x2-2x-1=0有一解,记为x1.取2与3的平均数2.5,因为f(2.5)=0.250,所以2x12.5.再取2与2.5的平均数
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-301098.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
