25.2 用列举法求概率(第2课时)教案(人教版九年级数学上).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 25.2 用列举法求概率第2课时教案人教版九年级数学上 列举 概率 课时 教案 人教版 九年级 数学
- 资源描述:
-
1、25.2 用列举法求概率(第2课时)一、教学目标【知识与技能】理解并掌握列表法和树状图法求随机事件的概率.并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.【过程与方法】经历用列表法或树状图法求概率的学习,使学生明白在不同情境中分析事件发生的多种可能性,计算其发生的概率,解决实际问题,培养学生分析问题和解决问题的能力.【情感态度与价值观】通过求概率的数学活动,体验不同的数学问题采用不同的数学方法,但各种方法之间存在一定的内在联系,体会数学在现实生活中应用价值,培养缜密的思维习惯和良好的学习习惯.二、课型新授课三、课时第2课时,共2课时。四、教学重难点【教学重点】1.会
2、用列表法和树状图法求随机事件的概率.2.区分什么时候用列表法,什么时候用树状图法求概率.【教学难点】1.列表法是如何列表,树状图的画法.2.列表法和树状图的选取方法.五、课前准备课件等.六、教学过程(一)导入新课出示课件2:现有A、B、C三盘包子,已知A盘中有两个酸菜包和一个糖包,B盘中有一个酸菜包和一个糖包和一个韭菜包,C盘中有一个酸菜包和一个糖包以及一个馒头.老师就爱吃酸菜包.如果老师从每个盘中各选一个包子(馒头除外),那么老师选的包子全部是酸菜包的概率是多少?你能用列表法列举所有可能出现的结果吗?出示课件3:通过播放视频,体会用“列表法”的不方便,从而导入新课.(板书课题)(二)探索新知
3、探究 利用画树状图法求概率教师问:抛掷一枚均匀的硬币,出现正面向上的概率是多少?(出示课件5)学生答:P(正面向上)=教师问:同时抛掷两枚均匀的硬币,出现正面向上的概率是多少? 学生答:可能出现的结果有:(正,正)(正,反)(反,正)(反,反)P(正面向上)=.教师问:还有别的方法求上面问题的概率吗?学生思考交流后,师生共同解答.(出示课件6)P(正面向上)=.出示课件7:如一个试验中涉及2个因素,第一个因素中有2种可能情况;第二个因素中有3种可能的情况.则其树形图如下图:教师归纳:树状图法:按事件发生的次序,列出事件可能出现的结果.出示课件8:同学们:你们玩过“石头、剪刀、布”的游戏吗,小明
4、和小华正在兴致勃勃的玩这个游戏,你想一想,这个游戏能用概率分析解答吗?尝试用树状图法列出小明和小华所玩游戏中所有可能出现的结果,并求出事件A、B、C的概率.A:“小明胜”B:“小华胜”C:“平局”学生尝试用树状图分析,师生共同解答.(出示课件9,10)一次游戏共有9个可能结果,而且它们出现的可能性相等.事件A发生的所有可能结果:(石头,剪刀)(剪刀,布)(布,石头);事件B发生的所有可能结果:(剪刀,石头)(布,剪刀)(石头,布);事件C发生的所有可能结果:(石头,石头)(剪刀,剪刀)(布,布).所以,P(A)=P(B)=P(C)=出示课件11,12:教师归纳:1.画树状图求概率的定义用树状图
5、的形式反映事件发生的各种情况出现的次数和方法、以及某一事件发生的可能性次数和方式,并求出概率的方法.适用条件:当一次试验涉及两个及其以上(通常3个)因素时,采用树状图法.2.画树状图求概率的基本步骤(1)将第一步可能出现的A种等可能结果写在第一层;(2)若第二步有B种等可能的结果,则在第一层每个结果下面画B个分支,将这B种结果写在第二层,以此类推;(3)根据树状图求出所有的等可能结果数及所求事件包含的结果数,利用概率公式求解.出示课件13,14:例1 某班有1名男生、2名女生在校文艺演出中获演唱奖,另有2名男生、2名女生获演奏奖.从获演唱奖和演奏奖的学生中各任选一人去领奖,求两人都是女生的概率
6、.学生独立思考后师生共同解答.解:设两名领奖学生都是女生的事件为A,两种奖项各任选1人的结果用“树状图”来表示.共有12种结果,且每种结果出现的可能性相等,其中2名都是女生的结果有4种,所以事件A发生的概率为P(A)=出示课件15:教师强调:计算等可能情形下概念的关键是确定所有可能性相等的结果总数n和求出事件A发生的结果总数m,“树状图”能帮助我们有序的思考,不重复、不遗漏地得出n和m.巩固练习:(出示课件16,17)经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,下列事件的概率(1)三辆车全部继续直行;(2)两车向右,一车向左;(
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
