江苏省徐州市沛县中学2015-2016学年高二下学期第二次质检数学试卷(文科) WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省徐州市沛县中学2015-2016学年高二下学期第二次质检数学试卷文科 WORD版含解析 江苏省 徐州市 沛县 中学 2015 2016 学年 下学 第二次 质检 数学试卷 文科 WORD 解析
- 资源描述:
-
1、2015-2016学年江苏省徐州市沛县中学高二(下)第二次质检数学试卷(文科)一、填空题:本大题共14小题,每题5分,共70分,请把答案填写在答题卡相应位置上1函数的定义域为2已知f()=x,则f(1)=3计算lg25+lg2lg5+lg2=4已知函数y=xlnx,则这个函数的图象在x=1处的切线方程为5函数f(x)=(x3)ex的单调递增区间是6函数f(x)=ax+loga(x+1)在0,1上的最大值和最小值之和为a,则a的值为7已知命题“xR,|xa|+|x+1|2”是假命题,则实数a的取值范围是8已知函数y=log(x2ax+a)在区间(2,+)上是减函数,则实数a的取值范围是9已知函数
2、f(x)是定义在R上的奇函数,则不等式x2f(x)0的解集是10“a1”是“函数f(x)=ax+cosx在R上单调递增”的条件(空格处请填写“充分不必要条件”、“必要不充分条件”、“充要条件”或“既不充分也不必要条件”)11若函数f(x)=x2+bx+c(b、cR)在区间(0,1)上有两个零点,则(1+b)c+c2的取值范围是12已知函数f(x)=,且关于x的方程f(x)+xa=0有且只有一个实根,则实数a的取值范围是13定义区间x1,x2长度为x2x1(x2x1),已知函数f(x)=(aR,a0)的定义域与值域都是m,n,则区间m,n取最大长度时a的值是14对定义在区间D上的函数f(x)和g
3、(x),如果对任意xD,都有|f(x)g(x)|1成立,那么称函数f(x)在区间D上可被G(X)替代,D称为“替代区间”给出以下命题:f(x)=x2+1在区间(,+)上可被g(x)=x2替代;f(x)=x可被g(x)=1替代的一个“替代区间”为,;f(x)=lnx在区间1,e可被g(x)=xb替代,则e2b2;f(x)=lg(ax2+x)(xD1),g(x)=sinx(xD2),则存在实数a(a0),使得f(x)在区间D1D2 上被g(x)替代;其中真命题的有二、解答题:本大题共6小题,共计90分,请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤15(1)(0.008)+()0
4、();(2)16函数f(x)=x22ax+1在闭区间1,1上的最小值记为g(a)(1)求g(a)的解析式;(2)求g(a)的最大值17设x1、x2(x1x2)是函数f(x)=ax3+bx2a2x(a0)的两个极值点(1)若x1=1,x2=2,求函数f(x)的解析式;(2)若,求b的最大值18某电影院共有1000个座位,票价不分等次,根据影院的经营经验,当每张票价不超过10元时,票可全售出;当每张票价高于10元时,每提高1元,将有30张票不能售出,为了获得更好的收益,需给影院定一个合适的票价,需符合的基本条件是:为了方便找零和算账,票价定为1元的整数倍;电影院放一场电影的成本费用支出为5750元
5、,票房的收入必须高于成本支出,用x(元)表示每张票价,用y(元)表示该影院放映一场的净收入(除去成本费用支出后的收入)问:(1)把y表示为x的函数,并求其定义域;(2)试问在符合基本条件的前提下,票价定为多少时,放映一场的净收人最多?19已知函数f(x)=1在R上是奇函数(1)求a;(2)对x(0,1,不等式sf(x)2x1恒成立,求实数s的取值范围;(3)令g(x)=,若关于x的方程g(2x)mg(x+1)=0有唯一实数解,求实数m的取值范围20已知函数f(x)=lnx,g(x)=x1(1)求函数f(x)的单调递减区间;(2)若关于x的方程f(x)g(x)+a=0在区间(,e)上有两个不等的
6、根,求实数a的取值范围;(3)若存在x01,当x(1,x0)时,恒有f(x)kg(x),求实数k的取值范围2015-2016学年江苏省徐州市沛县中学高二(下)第二次质检数学试卷(文科)参考答案与试题解析一、填空题:本大题共14小题,每题5分,共70分,请把答案填写在答题卡相应位置上1函数的定义域为(1,+)【考点】对数函数的定义域【分析】根据对数的真数大于0,被开方数大于0,直接求出x的范围即可【解答】解:应该满足,即2+x1,解得x1所以函数的定义域为(1,+)故答案为:(1,+)2已知f()=x,则f(1)=【考点】函数的值【分析】根据函数的解析式,令=1,求出x即可得到结论【解答】解:由
7、令=1,解得x=,即f(1)=,故答案为:3计算lg25+lg2lg5+lg2=1【考点】对数的运算性质【分析】根据对数的运算法则进行计算即可得到结论【解答】解:lg25+lg2lg5+lg2=(lg5+lg2)lg5+lg2=lg5+lg2=lg10=1,故答案为:14已知函数y=xlnx,则这个函数的图象在x=1处的切线方程为y=x1【考点】利用导数研究曲线上某点切线方程【分析】求函数的导数,利用导数的几何意义,求切线方程,【解答】解:函数的导数为f(x)=1+lnx,f(1)=1+ln1=1f(1)=0,即切点坐标为(1,0),切线方程为y=x1,故答案为:y=x15函数f(x)=(x3
8、)ex的单调递增区间是(2,+)【考点】利用导数研究函数的单调性【分析】首先对f(x)=(x3)ex求导,可得f(x)=(x2)ex,令f(x)0,解可得答案【解答】解:f(x)=(x3)ex+(x3)(ex)=(x2)ex,令f(x)0,解得x2故答案为:(2,+)6函数f(x)=ax+loga(x+1)在0,1上的最大值和最小值之和为a,则a的值为【考点】对数函数的单调性与特殊点;指数函数单调性的应用【分析】结合函数y=ax与y=logax的单调性可知f(x)=ax+logax在0,1单调,从而可得函数在0,1上的最值分别为f(0),f(1),代入可求a【解答】解:y=ax与y=loga(
9、x+1)具有相同的单调性f(x)=ax+loga(x+1)在0,1上单调,f(0)+f(1)=a,即a0+loga1+a1+loga2=a,化简得1+loga2=0,解得a=故答案为:7已知命题“xR,|xa|+|x+1|2”是假命题,则实数a的取值范围是(,3)(1,+)【考点】命题的真假判断与应用【分析】利用已知判断出否命题为真命题;构造函数,利用绝对值的几何意义求出函数的最小值,令最小值大于2,求出a的范围【解答】解:“xR,|xa|+|x+1|2”是假命题“xR,|xa|+|x+1|2”的否定“xR,|xa|+|x+1|2”为真命题令y=|xa|+|x+1|,y表示数轴上的点x到数a及
10、1的距离,所以y的最小值为|a+1|a+1|2解得a1或a3故答案为:(,3)(1,+)8已知函数y=log(x2ax+a)在区间(2,+)上是减函数,则实数a的取值范围是a4【考点】对数函数的图象与性质【分析】令t=x2ax+a,则由题意可得函数t在区间2,+)上为增函数且t(2)0,故有,由此解得实数a的取值范围【解答】解:令t=x2ax+a,则由函数f(x)=g(t)=logt 在区间2,+)上为减函数,可得函数t在区间2,+)上为增函数且t(2)0,故有,解得a4,故实数a的取值范围是a4,故答案为:a49已知函数f(x)是定义在R上的奇函数,则不等式x2f(x)0的解集是(1,0)(
11、1,+)【考点】函数奇偶性的性质;其他不等式的解法【分析】当x0时,根据已知条件中,我们不难判断函数f(x)的导函数f(x)的符号,由此不难求出函数的单调性,再由函数f(x)是定义在R上的奇函数,及f(1)=0,我们可以给出各个区间f(x)的符号,由此不难给出不等式x2f(x)0的解集【解答】解:由,即0;则在(0,+)为增函数,且当x=1时,有=f(1)=0;故函数在(0,1)有0,又有x0,则此时f(x)0,同理,函数在(1,+)有0,又有x0,则此时f(x)0,故又由函数f(x)是定义在R上的奇函数当x(,1)时,f(x)0当x(1,0)时,f(x)0;而x2f(x)0f(x)0,故不等
12、式x2f(x)0的解集为:(1,0)(1,+)故答案为:(1,0)(1,+)10“a1”是“函数f(x)=ax+cosx在R上单调递增”的充分不必要条件条件(空格处请填写“充分不必要条件”、“必要不充分条件”、“充要条件”或“既不充分也不必要条件”)【考点】必要条件、充分条件与充要条件的判断【分析】由条件利用充分条件、必要条件、充要条件的定义进行判断,可得结论【解答】解:由“a1”,可得f(x)=1sinx0,故“函数f(x)=ax+cosx在R上单调递增”,故充分性成立由“函数f(x)=ax+cosx在R上单调递增”,可得f(x)=1sinx0,a1,不能得到“a1”,故必要性不成立,故答案
13、为:充分不必要条件11若函数f(x)=x2+bx+c(b、cR)在区间(0,1)上有两个零点,则(1+b)c+c2的取值范围是(0,)【考点】函数零点的判定定理【分析】若函数f(x)在区间(0,1)上有两个零点,为x1,x2(0x1x21),即f(0)=c=x1x20,f(1)=1+b+c=(1x1)(1x2)0,进而结合基本不等式可得c2+1+bc的范围即可【解答】解:f(x)=x2+bx+c的两个零点为x1,x2,不妨设为:0x1x21,则f(x)=(xx1)(xx2)又f(0)=c=x1x20,f(1)=1+b+c=(1x1)(1x2)0c(1+b+c)=f(0)f(1),而0f(0)f
14、(1)=x1x2(1x1)(1x2)=,即c(1+b+c)=c2+1+bc,故答案为:(0,)12已知函数f(x)=,且关于x的方程f(x)+xa=0有且只有一个实根,则实数a的取值范围是(1,+)【考点】函数的零点【分析】由f(x)+xa=0得f(x)=x+a,作出函数f(x)和y=x+a的图象,由数形结合即可得到结论【解答】解:由f(x)+xa=0得f(x)=x+a,f(x)=,作出函数f(x)和y=x+a的图象,则由图象可知,要使方程f(x)+xa=0有且只有一个实根,则a1,故答案为:(1,+)13定义区间x1,x2长度为x2x1(x2x1),已知函数f(x)=(aR,a0)的定义域与
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-318436.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
