分享
分享赚钱 收藏 举报 版权申诉 / 13

类型江苏省盐城市2022届高三数学考前突击精选模拟试题4苏教版.docx

  • 上传人:a****
  • 文档编号:324182
  • 上传时间:2025-11-27
  • 格式:DOCX
  • 页数:13
  • 大小:579.89KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    江苏省 盐城市 2022 届高三 数学 考前 突击 精选 模拟 试题 苏教版
    资源描述:

    1、江苏省盐城市2022届高三考前突击精选模拟试卷数学卷4一、填空题:本题考查基础知识、基本运算和基本思想方法每小题5分,共70分 a1 b2 c3 ca ab bc Print a,b(第3题)1 在平面直角坐标系中,双曲线的离心率为 . 答案:2 若复数z满足(是虚数单位),则z= . 答案:1+2i3 在右图的算法中,最后输出的a,b的值依次是 . 答案:2,14 一组数据9.8,9.9,10,a,10.2的平均数为10,则该组数据的方差为 . 答案:0.025 设全集Z,集合,则 (用列举法表示). 答案:0,16 在平面直角坐标系中,已知向量a = (1,2),(3,1),则 . 答案:

    2、07 将甲、乙两个球随机放入编号为1,2,3的3个盒子中,每个盒子的放球数量不限,则在1,2号盒子中各有1个球的概率为 .答案:8. 设P是函数图象上异于原点的动点,且该图象在点P处的切线的倾斜角为,则的取值范围是 .答案:9 如图,矩形ABCD的三个顶点A、B、C分别在函数,的图象上,且矩形的边分别平行于两坐标轴. 若点A的纵坐标为2,则点D的坐标为 .答案:10观察下列等式: , , , , 猜想: (). 答案:11在棱长为4的正方体中,、分别为棱、上的动点,点为正方形的中心. 则空间四边形在该正方体各个面上的正投影所构成的图形中,面积的最大值为 .答案:12OBCF1F2Dxy(第13

    3、题)12若对任意的都成立,则的最小值为 . 答案:13如图,在平面直角坐标系xOy中,F1,F2分别为椭圆()的左、右焦点,B,C分别为椭圆的上、下顶点,直线BF2与椭圆的另一交点为. 若,则直线的斜率为 .答案:14各项均为正偶数的数列a1,a2,a3,a4中,前三项依次成公差为d(d0)的等差数列,后三项依次成公比为q的等比数列. 若,则q的所有可能的值构成的集合为 .答案: 二、解答题15满分14分 在斜三角形中,角A,B,C的对边分别为 a,b,c.(1)若,求的值;(2)若,求的值.解:(1)由正弦定理,得 从而可化为 3分 由余弦定理,得 整理得,即. 7分 (2)在斜三角形中,

    4、所以可化为, 即10分 故 整理,得, 12分 因为ABC是斜三角形,所以sinAcosAcosC, 所以14分16满分14分A(第16题)BCDD1C1B1A1M如图,在六面体中,.求证:(1);(2).证明:(1)取线段的中点,连结、, 因为, 所以,3分 又,平面,所以平面 而平面, 所以.7分 (2)因为, 平面,平面, 所以平面9分 又平面,平面平面,11分 所以同理得, 所以14分 17满分14分将52名志愿者分成A,B两组参加义务植树活动,A组种植150捆白杨树苗,B组种植200捆沙棘树苗假定A,B两组同时开始种植(1)根据历年统计,每名志愿者种植一捆白杨树苗用时小时,种植一捆沙

    5、棘树苗用时小时.应如何分配A,B两组的人数,使植树活动持续时间最短?(2)在按(1)分配的人数种植1小时后发现,每名志愿者种植一捆白杨树苗用时仍为小时,而每名志愿者种植一捆沙棘树苗实际用时小时,于是从A组抽调6名志愿者加入B组继续种植,求植树活动所持续的时间. 解:(1)设A组人数为,且, 则A组活动所需时间;2分 B组活动所需时间4分 令,即,解得所以两组同时开始的植树活动所需时间 6分 而故 所以当A、B两组人数分别为时,使植树活动持续时间最短8分 (2)A组所需时间为1+(小时),10分 B组所需时间为(小时), 12分 所以植树活动所持续的时间为小时 14分18满分16分 如图,在平面

    6、直角坐标系中,已知圆:,圆:(第18题)才(1)若过点的直线被圆截得的弦长为 ,求直线的方程;(2)设动圆同时平分圆的周长、圆的周长 证明:动圆圆心C在一条定直线上运动;动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由 解:(1)设直线的方程为,即 因为直线被圆截得的弦长为,而圆的半径为1,所以圆心到:的距离为3分 化简,得,解得或 所以直线的方程为或6分 (2)证明:设圆心,由题意,得, 即 化简得,即动圆圆心C在定直线上运动10分 圆过定点,设,则动圆C的半径为于是动圆C的方程为整理,得14分由得或 所以定点的坐标为,16分19满分16分已知函数(1)设P,Q是函数图象上相异

    7、的两点,证明:直线PQ的斜率大于0;(2)求实数的取值范围,使不等式在上恒成立 解:(1)由题意,得 所以函数在R上单调递增 设,则有,即 6分 (2)当时,恒成立8分 当时,令, 当,即时, 所以在上为单调增函数 所以,符合题意 10分 当,即时,令, 于是 因为,所以,从而 所以在上为单调增函数 所以,即,亦即12分(i)当,即时,所以在上为单调增函数于是,符合题意14分(ii)当,即时,存在,使得当时,有,此时在上为单调减函数,从而,不能使恒成立综上所述,实数的取值范围为16分20满分16分设数列的各项均为正数.若对任意的,存在,使得成立,则称数列为“Jk型”数列(1)若数列是“J2型”

    8、数列,且,求;(2)若数列既是“J3型”数列,又是“J4型”数列,证明:数列是等比数列.解:(1)由题意,得,成等比数列,且公比, 所以 4分 (2)证明:由是“型”数列,得 ,成等比数列,设公比为. 6分 由是“型”数列,得 ,成等比数列,设公比为; ,成等比数列,设公比为; ,成等比数列,设公比为; 则, 所以,不妨记,且 12分 于是, , , 所以,故为等比数列16分数学附加题21【选做题】A选修41:几何证明选讲 满分10分AEBCDO(第21A题) 如图,AB是半圆O的直径,延长AB到C,使BC,CD切半圆O于点D, DEAB,垂足 为E若AEEB31,求DE的长 解:连接AD、D

    9、O、DB 由AEEB31,得21 又DEAB,所以 故为正三角形5分 于是 而,故 所以 在中,10分B选修42:矩阵与变换满分10分 在平面直角坐标系xOy中,直线在矩阵对应的变换下得到的直线过点,求实数的值 解:设变换T:,则,即5分 代入直线,得 将点代入上式,得k410分 C选修44:坐标系与参数方程满分10分 在极坐标系中,已知圆()与直线相切,求实数a的值 解:将圆化成普通方程为,整理,得 将直线化成普通方程为 6分 由题意,得解得 10分 D选修45:不等式选讲满分10分 已知正数,满足,求证: 证明: 4分 (当且仅当时等号成立) 10分22【必做题】满分10分已知数列满足:,

    10、(1)求,的值;(2)证明:不等式对于任意都成立(1)解:由题意,得 2分(2)证明:当时,由(1),知,不等式成立4分 设当时,成立,6分则当时,由归纳假设,知而,所以, 即当时,不等式成立由,得不等式对于任意成立10分 23【必做题】满分10分如图,在平面直角坐标系中,抛物线的顶点在原点,焦点为F(1,0)过抛物线在轴上 方的不同两点、作抛物线的切线、,与轴分别交于、两点,且与交于点,直线与直线交于点(1)求抛物线的标准方程;(2)求证:轴;(3)若直线与轴的交点恰为F(1,0), 求证:直线过定点解:(1)设抛物线的标准方程为, 由题意,得,即 所以抛物线的标准方程为3分 (2)设,且,由(),得,所以 所以切线的方程为,即整理,得, 且C点坐标为同理得切线的方程为,且D点坐标为 由消去,得5分 又直线的方程为, 直线的方程为 由消去,得 所以,即轴 7分 (3)由题意,设,代入(1)中的,得,所以都满足方程 所以直线的方程为 故直线过定点10分13

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:江苏省盐城市2022届高三数学考前突击精选模拟试题4苏教版.docx
    链接地址:https://www.ketangku.com/wenku/file-324182.html
    相关资源 更多
  • 江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc
  • 江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc
  • 江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx
  • 湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc
  • 湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc
  • 湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc
  • 湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc
  • 江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc
  • 江西省重点高中2022学年高一数学上学期第三次月考试题.docx江西省重点高中2022学年高一数学上学期第三次月考试题.docx
  • 湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc
  • 江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc
  • 江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc
  • 湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc
  • 江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1