江苏省扬州市大桥高级中学2020届高三数学下学期阶段性考试试题(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 扬州市 大桥 高级中学 2020 届高三 数学 下学 阶段性 考试 试题 解析
- 资源描述:
-
1、江苏省扬州市大桥高级中学2020届高三数学下学期阶段性考试试题(含解析)一填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上.1.函数最小正周期_【答案】【解析】函数的最小正周期为 2.函数在区间上递减,则实数的取值范围是_【答案】【解析】【分析】根据二次函数开口方向,对称轴以及在区间上的单调性列不等式,解不等式求得的取值范围.【详解】f(x)=x2+2(a3)x+1,在区间(,3)上递减,开口向上,且对称轴,3a3,解得,a6故答案为:.【点睛】本小题主要考查根据二次函数在给定区间上的单调性求参数的取值范围,属于基础题.3.已知焦点在轴上的双曲线的渐近线方程为,则
2、双曲线的离心率为_.【答案】【解析】【分析】焦点在轴上的双曲线的渐近线方程为,可知,由此可求出双曲线的离心率【详解】由题可设焦点在轴上的双曲线方程为,由于该双曲线的渐近线方程为,则,在双曲线中,所以双曲线的离心率,故双曲线的离心率为【点睛】本题考查双曲线的离心率的求法,双曲线渐近方程的应用,属于基础题4.已知函数(其中为自然对数的底数)为偶函数,则实数的值为_【答案】1【解析】【分析】利用恒成立可得实数的值【详解】因为偶函数,所以恒成立即,整理得到恒成立,故,填.【点睛】含参数的偶函数(或奇函数),可通过取自变量的特殊值来求参数的大小,注意最后检验必不可少,也可以利用(或)恒成立来求参数的大小
3、.5.在中,点分别在边上,且,记,若则的值为_.【答案】【解析】【分析】利用平面向量加法、减法和数乘的运算,将转化为以为基底的表现形式,根据平面向量的基本定理求得的值,由此求得的值.【详解】如图,AD=DB,BE=2EC;,且;又;根据平面向量基本定理得,;.故答案为:【点睛】本小题主要考查平面向量的线性运算,考查平面向量基本定理,属于基础题.6.已知各项均为正数的等比数列an满足则的值为_.【答案】【解析】【分析】将已知条件转化为的形式列方程组,解方程组求得的值,进而求得的值.【详解】a3=4,S3=7,则q1,整理可得,3q24q4=0,q0,解可得q=2或q(舍)则a22.故答案为:【点
4、睛】本小题主要考查等比数列通项公式以及前项和公式的基本量计算,属于基础题.7.已知x,y为正数,且,则的最小值为_.【答案】7【解析】【分析】由题设等式有,利用基本不等式可求的最小值,从而可得的最小值.【详解】,由基本不等式有,当且仅当时等号成立,故的最小值为即的最小值为.故答案为:.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.8.函数(A0,0)的部分图象如图所示若函数在区间m,n上的值域为,2,则nm的最小值是_【答案】3.【解析】【分析】根据三角函数
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
