江苏省泰州市2020届高三数学上学期期中试题(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 泰州市 2020 届高三 数学 学期 期中 试题 解析
- 资源描述:
-
1、江苏省泰州市2020届高三数学上学期期中试题(含解析)一、填空题(每小题5分,共70分)1.已知集合,集合,则_.【答案】【解析】【分析】先由一元二次不等式的解法可得,再结合交集的运算即可得解.【详解】解:由,又,则,故答案为: .【点睛】本题考查了一元二次不等式的解法,重点考查了交集的运算,属基础题.2.已知角的终边经过点,则角的正切值为_.【答案】【解析】【分析】由三角函数的定义:已知角的终边经过点,则,代入即可得解.【详解】解:由三角函数的定义可得,故答案为:.【点睛】本题考查了三角函数的定义,属基础题.3.在中,a15,b10,A60,则cos B_【答案】【解析】【详解】试题分析:由
2、正弦定理可得,解得所以因为,所以,所以角为锐角,所以,考点:1三角形中正弦定理;2同角三角函数基本关系式4.设Sn为等比数列an的前n项和,8a2a5=0,则=_.【答案】11【解析】通过8a2a50,设公比为q,将该式转化为8a2a2q30,解得q2,所以11.5.已知,则_【答案】【解析】 6.已知正数满足,那么的最小值为 【答案】【解析】试题分析:因为:,由均值不等式得:,令,则考点:1均值不等式求最值;2还原法解不等式7.若非零向量,满足,则与的夹角等于_.【答案】【解析】【分析】先由向量数量积运算可得,再结合向量夹角公式求解即可.【详解】解:由,则,设为与的夹角,则,又,则,即,故答
3、案为:.【点睛】本题考查了向量数量积运算,重点考查了向量夹角的运算,属基础题.8.已知偶函数满足,则解集为_ _【答案】【解析】【分析】通过判断函数的奇偶性,增减性就可以解不等式.【详解】根据题意可知,令,则转化为,由于偶函数在上为增函数,则,即,即或,即或.【点睛】本题主要考查利用函数的性质(奇偶性,增减性)解不等式,意在考查学生的转化能力,分析能力及计算能力.9.已知等差数列的前项和为.若与的等差中项为8,则_.【答案】【解析】【分析】等差数列的性质可得,再结合求解即可.【详解】解:由等差数列的前项和为,由等差数列的性质可得,又与的等差中项为8,即,即,即,即,即,故答案为:.【点睛】本题
4、考查了等差数列的性质,重点考查了等差数列的前项和公式,属基础题.10.若,则函数的最大值为 【答案】-8【解析】试题分析:设当且仅当时成立考点:函数单调性与最值11.在中,点为重心,且,则_.【答案】8【解析】【分析】由向量的线性运算及向量数量积的运算可得,再代入运算即可得解.【详解】解:由,且,则,即,又,则,即,即即,故答案为:8.【点睛】本题考查了向量的线性运算,重点考查了向量数量积的运算,属中档题.12.若函数恰有2个零点,则的取值范围是_.【答案】,【解析】【分析】根据题意,在同一个坐标系中作出函数和的图象,结合图象分析可得答案【详解】根据题意,在同一个坐标系中作出函数和的图象,如图
5、:若函数恰有2个零点,即函数图象与轴有且仅有2个交点,则或,即的取值范围是:,故答案为:,【点睛】本题考查分段函数的图象和函数的零点,考查数形结合思想的运用,考查发现问题解决问题的能力.13.已知数列是首项为,公差为的等差数列,若是等比数列,则其公比为_.【答案】-1【解析】【分析】先求出,再结合是等比数列可得,再求解即可.【详解】解:由数列是首项为,公差为的等差数列,则,则,则, 又是等比数列,则,即,即,又,即,即,即,即,则,故答案为:.【点睛】本题考查了等差数列及等比数列的有关问题,重点考查了三角恒等变换,属中档题.14.已知,则的最大值是_.【答案】【解析】【分析】将化简、变形为,然
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
