分享
分享赚钱 收藏 举报 版权申诉 / 4

类型湖北省恩施巴东县第一高级中学高中数学(人教版)教案 选修1-2 第三章 数系的扩充与复数的引入教材分析.doc

  • 上传人:a****
  • 文档编号:337690
  • 上传时间:2025-11-27
  • 格式:DOC
  • 页数:4
  • 大小:111.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    湖北省恩施巴东县第一高级中学高中数学人教版教案 选修1-2 第三章 数系的扩充与复数的引入教材分析 湖北省 恩施 巴东县 第一 高级中学 高中数学 人教版 教案 选修 第三 扩充 复数 引入 教材
    资源描述:

    1、第三章数系的扩充与复数的引入教材分析数系的扩充与复数的引入是选修12与选修22的内容,是高中生的共同数学基础之一数系的扩充过程体现了数学的发现和创造过程,同时了数学产生、发展的客观需求,复数的引入襀了中学阶段数系的又一次扩充课标将复数作为数系扩充的结果引入,体现了实际需求与数学内部的矛盾在数系扩充过程中的作用,以及数系扩充过程中数系结构与运算性质的变化这部分内容的学习,有助于学生体会理论产生与发展的过程,认识到数学产生和发展既有来自外部的动力,也有来自数学内部的动力,从而形成正确的数学观;有助于发展学生的全新意识和创新能力复数的内容是高中数学课程中的传统内容对于复数,课标要求在问题情境中了解数

    2、系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以数与现实世界的联系;理解复数的基本概念以及复数相等的充要条件;了解复数的代数表示法及其几何意义;能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义本章内容分为2节,教学时间约4课时第一节数系的扩充和复数的概念本节的主要教学内容是数系的扩充和复数的概念、复数的几何意义(几何表示和向量表示)教学目标(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系(2)理解

    3、复数的基本概念以及复数相等的充要条件(3)了解复数的代数表示法及其几何意义教学重点(1)数系的扩充过程(2)复数的概念、复数的分类和复数相等的充要条件(3)复数的几何意义教学难点(1)虚数单位的引进(2)复数的几何意义教学时数本节教学,建议用2课时第1课时处理数系的扩充和复数的概念;第2课时研究复数的几何意义课标对本节内容的处理特点数系的扩充和复数的概念,课标与大纲教学内容相同,但在处理方式和目标定位上存在差异:(1)课标将复数作为数系扩充的结果引入大纲教科书先安排复数的概念,再研究复数的运算,最后介绍数系的扩充课标实验教科书在介绍数系扩充的思想方法的基础上引入复数的概念,力求还原复数的发现与

    4、建构过程(2)课标强调在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系从这上点上看,课标要求提高了(3)在复数的代数表示法及其几何意义上,课标的教学定位是“了解”,而大纲要求“掌握”从这上点上看,课标要求降低了教学建议1关于“数系的扩充的复数的概念”的教学建议(1)课题的引入教学时,可从方程在给定范围内是否有解提出问题: 在自然数集N中,方程有解吗? 在整数集Z中,方程有解吗? 在有理数集Q中,方程2有解吗? 在实数集R中,方程有解吗?(2)回顾从自然数集N扩充到实数集R的过程帮助学生认识数系扩充的主要原因和共同特

    5、征可让学生思考如下问题: 从自然数集N扩充到实数集R经历了几次扩充? 每一次扩充的主要原因是什么? 每一次扩充的共同特征是什么?然后师生共同归纳总结:扩充原因: 满足实际问题解决的需要; 满足数学自身完善和发展的需要扩充特征: 引入新的数; 原数集中的运算规则在新数集中得到保留和扩展(3)提出新的问题:如何对实数集进行扩充,使方程在新的数集中的解?(4)引入虚数单位(5)学习复数的概念(6)规定复数相等的意义(7)研究复数的分类(8)告诉学生“两个复数只能说相等或不相等,不能比较大小”的理由: ;在两式中,只要有一个不成立,则 如果两个复数都是实数,则可以比较大小;否则,不能比较大小 “不能比

    6、较大小”的确切含义是指:不论怎样定义两个复数之间的一个关系“”,都不能使这种关系同时满足实数集中大小关系的四条性质:对于任意实数,来说,这种情况有且只有一种成立;如果,那么;如果,那么;如果,那么2关于“复数的几何意义”的教学建议(1)帮助学生认识复数的几何表示复数的几何表示就是指用复平面内的点Z()来表示复数 明确“复平面”的概念一一对应 建立复数集C和复平面内所有的点所成的集合之间的一一对应关系,即复数复平面内的点Z()(2)帮助学生认识复数的向量表示复数的向量表示就是指用复平面内的向量来表示复数认识复平面内的点Z()与向量的一一对应关系 在相互联系中把握复数的向量表示:复数一一对应 一一

    7、对应一一对应点Z()向量(3)用数形结合的思想方法,强化对复数几何意义的认识在复平面内,实数与实轴上的点一一对应,纯虚数与虚轴上的点(原点除外)一一对应,非纯虚数的虚数与象限内的点一一对应可通过一组练习题来强化这一认识第二节 复数代数形式的四则运算本节的主要教学内容是复数代数形式的加减运算及其几何意义,复数代数形式的乘除运算教学目标(1)掌握复数代数形式的加减运算法则(2)了解复数代数形式的加减运算的几何意义(3)理解复数代数形式的乘除运算法则(4)体验复数问题实数化的思想方法教学重点(1)复数代数形式的加减运算及其几何意义(2)复数代数形式的乘除运算(3)复数问题实数化的思想方法复数的理解与

    8、运用教学难点(1)复数代数形式的加减运算的规定(2)复数代数形式的加减运算的几何意义的理解(3)复数代数形式的乘除运算法则的运用教学时数本节教学,建议用2课时第1课时处理复数代数形式的加减运算及其几何意义;第2课时研究复数代数形式的乘除运算课标对本节内容的处理特点复数代数形式的四则运算,课标与大纲教学内容与要求基本相同,但在目标定位上存在差异:(1)课标要求了解复数代数形式的加减运算的几何意义,对复数的向量表示提出了要求,强化了数形结合思想方法;(2)课标明确强调“淡化烦琐的计算和技巧性训练,突出了复数问题实数化的思想方法教学建议1复数代数形式的加法和乘法的运算法则是一种规定,要让学生理解其合理性这种合理性应从数系扩充的角度来理解:这种规定与实数加法、乘法的法则是一致的,而且实数加法、乘法的有关运算律在这里仍然成立2复数的减法、除法分别规定为复数的加法和乘法的逆运算,要让学生按照这种规定自主得出复数减法和除法的运算法则3复数代数形式的四则运算可以类比代数运算中的“合并同类项”“分母有理化”,利用,将它们归结为实数的四则运算在具体运算情境中,引入共轭复的概念,明确公式是复数除法中“分母实数化”的基础,不必让学生专门计忆复数除法法则从而让学生体验复数问题实数化的思想方法4要引领学生从平面向量的加法、减法的平行四边形或三角形法则来认识并理解复数代数形式的加减运算的几何意义

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:湖北省恩施巴东县第一高级中学高中数学(人教版)教案 选修1-2 第三章 数系的扩充与复数的引入教材分析.doc
    链接地址:https://www.ketangku.com/wenku/file-337690.html
    相关资源 更多
  • 江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc
  • 江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc
  • 江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx
  • 湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc
  • 湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc
  • 湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc
  • 湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc
  • 江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc
  • 江西省重点高中2022学年高一数学上学期第三次月考试题.docx江西省重点高中2022学年高一数学上学期第三次月考试题.docx
  • 湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc
  • 江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc
  • 江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc
  • 湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc
  • 江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1